Automatic Camera Pose Recognition in Planar View Scenarios

  • Luis Alvarez
  • Luis Gomez
  • Pedro Henriquez
  • Luis Mazorra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


The main goal of this paper is to recognize automatically camera pose from a single image of a planar view scenario. We apply this technique to sport event scenarios using as information the white lines/circles dividing the different parts of the sport court. Using these court primitives we define a loss function that we minimize to obtain the best perspective transformation (homography) matching the actual sport court with its projection in the image. From such homography we recover the camera pose (position and orientation in the 3D space). We present numerical experiments in simulated and real sport scenarios.


camera calibration sport scenarios lens distortion 


  1. 1.
    Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic Soccer Video Analysis and Summarization. IEEE Transactions on Image Processing 12(7) (July 2003)Google Scholar
  2. 2.
    Liu, Y., Huang, Q., Ye, Q., Gao, W.: A new method to calculate the camera focusing area and player position on play field in soccer video. In: Visual Communications and Image Processing (2005)Google Scholar
  3. 3.
    Alemán-Flores, M., Alvarez, L., Henríquez, P., Mazorra, L.: Morphological Thick Line Center Detection. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 71–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Li, Q., Luo, Y.: Automatic Camera Calibration for Images of Soccer Match. Proceedings of World Academy of Science, Engineering and Technology 1, 170–173 (2005)Google Scholar
  5. 5.
    Alvarez, L., Gomez, L., Sendra, J.R.: An algebraic approach to lens distortion by line rectification. Journal of Mathematical Imaging and Vision 35, 36–50 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alvarez, L., Gomez, L., Sendra, J.R.: Accurate Depth Dependent Lens Distortion Models: An Application to Planar View Scenarios. Journal of Mathematical Imaging and Vision 39, 75–85 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Farin, D., Krabbe, S., de With, P.H.N., Effelsberg, W.: Robust camera calibration for sport videos using court models. Storage and Retrieval Methods and Applications for Multimedia 5307, 80–91 (2004)Google Scholar
  8. 8.
    Jiang, B., Songyang, L., Liang, B.: Automatic line mark recognition and its application in camera calibration in soccer video. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2011)Google Scholar
  9. 9.
    Babaee-Kashany, V., Reza Pourreza, H.: Camera Pose Estimation in Soccer Scenes Based on Vanishing Points. In: 9th IEEE International Symposium on Haptic Audio-Visual Environments and Games, pp. 157–162 (2010)Google Scholar
  10. 10.
    Alvarez, L., Caselles, V.: Calibration method for a TV and video camera. European Patent 09380137.1 (issued, February 2011)Google Scholar
  11. 11.
    Eagles, T.H.: Constructive geometry of plane curves. Macmillan and Co. (1885)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luis Alvarez
    • 1
  • Luis Gomez
    • 1
  • Pedro Henriquez
    • 1
  • Luis Mazorra
    • 1
  1. 1.CTIM (Centro de Tecnologías de la Imagen)Universidad de Las Palmas de Gran CanariaSpain

Personalised recommendations