Advertisement

Paper Interfaces for Learning Geometry

  • Quentin Bonnard
  • Himanshu Verma
  • Frédéric Kaplan
  • Pierre Dillenbourg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7563)

Abstract

Paper interfaces offer tremendous possibilities for geometry education in primary schools. Existing computer interfaces designed to learn geometry do not consider the integration of conventional school tools, which form the part of the curriculum. Moreover, most of computer tools are designed specifically for individual learning, some propose group activities, but most disregard classroom-level learning, thus impeding their adoption. We present an augmented reality based tabletop system with interface elements made of paper that addresses these issues. It integrates conventional geometry tools seamlessly into the activity and it enables group and classroom-level learning. In order to evaluate our system, we conducted an exploratory user study based on three learning activities: classifying quadrilaterals, discovering the protractor and describing angles. We observed how paper interfaces can be easily adopted into the traditional classroom practices.

Keywords

Paper interfaces Sheets Cards Geometry learning Tabletop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klemmer, S.R., Graham, J., Wolff, G.J., Landay, J.A.: Books with voices: paper transcripts as a physical interface to oral histories. In: CHI 2003, pp. 89–96. ACM, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Moran, T.P., Saund, E., Van Melle, W., Gujar, A.U., Fishkin, K.P., Harrison, B.L.: Design and technology for collaborage: collaborative collages of information on physical walls. In: UIST 1999, pp. 197–206. ACM, New York (1999)CrossRefGoogle Scholar
  3. 3.
    Flagg, M., Rehg, J.: Projector-guided painting. In: UIST 2006, pp. 235–244. ACM (2006)Google Scholar
  4. 4.
    Nelson, L., Ichimura, S., Pedersen, E.R., Adams, L.: Palette: a paper interface for giving presentations. In: CHI 1999, pp. 354–361. ACM, New York (1999)Google Scholar
  5. 5.
    Lam, A.H.T., Chow, K.C.H., Yau, E.H.H., Lyu, M.R.: Art: augmented reality table for interactive trading card game. In: VRCIA 2006, pp. 357–360. ACM, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Cho, H., Jung, J., Cho, K., Seo, Y.H., Yang, H.S.: Ar postcard: the augmented reality system with a postcard. In: VRCIA 2011, pp. 453–454. ACM, New York (2011)Google Scholar
  7. 7.
    Hong, J., Price, M.N., Schilit, B.N., Golovchinsky, G.: Printertainment: printing with interactive cover sheets. In: CHI EA 1999, pp. 240–241. ACM, New York (1999)Google Scholar
  8. 8.
    García, R., Quirós, J., Santos, R., González, S., Fernanz, S.: Interactive multimedia animation with Macromedia Flash in Descriptive Geometry teaching. Computers & Education 49(3), 615–639 (2007)CrossRefGoogle Scholar
  9. 9.
    Underkoffler, J., Ishii, H.: Illuminating light: a casual optics workbench. In: CHI EA 1999, pp. 5–6. ACM, New York (1999)Google Scholar
  10. 10.
    Oviatt, S., Arthur, A., Brock, Y., Cohen, J.: Expressive pen-based interfaces for math education. In: International Society of the Learning Sciences (CSCL), pp. 573–582 (2007)Google Scholar
  11. 11.
    Laborde, C., Keitel, Ruthven, K.: The computer as part of the learning environment: the case of geometry. In: Learning from Computers: Mathematics Education and Technology, pp. 48–67. Springer (1993)Google Scholar
  12. 12.
    Straesser, R.: Cabri-geometre: Does dynamic geometry software (dgs) change geometry and its teaching and learning? International Journal of Computers for Mathematical Learning 6(3), 319–333 (2002)CrossRefGoogle Scholar
  13. 13.
    Kortenkamp, U., Dohrmann, C.: User Interface Design for Dynamic Geometry Software. Acta Didactica Napocensia 3 (2010)Google Scholar
  14. 14.
    Kaufmann, H., Dünser, A.: Summary of Usability Evaluations of an Educational Augmented Reality Application. In: Shumaker, R. (ed.) HCII 2007 and ICVR 2007. LNCS, vol. 4563, pp. 660–669. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcaņiz, M., Pérez-López, D., Ortega, M.: Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics 34(1), 77–91 (2010)CrossRefGoogle Scholar
  16. 16.
    Wellner, P.: Interacting with paper on the DigitalDesk. Communications of the ACM 36(7), 87–96 (1993)CrossRefGoogle Scholar
  17. 17.
    Malacria, S., Pietrzak, T., Tabard, A., Lecolinet, É.: U-Note: Capture the Class and Access It Everywhere. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 643–660. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Asai, K., Kobayashi, H., Kondo, T.: Augmented instructions - a fusion of augmented reality and printed learning materials. In: ICALT, pp. 213–215. IEEE Computer Society (2005)Google Scholar
  19. 19.
    Portocarrero, E., Robert, D., Follmer, S., Chung, M.: The Never Ending Storytelling Machine a platform for creative collaboration using a sketchbook and everyday objects. In: Proc. PaperComp 2010 (2010)Google Scholar
  20. 20.
    Koike, H., Sato, Y., Kobayashi, Y., Tobita, H., Kobayashi, M.: Interactive textbook and interactive venn diagram: natural and intuitive interfaces on augmented desk system. In: CHI 2000, pp. 121–128. ACM, New York (2000)Google Scholar
  21. 21.
    Lee, W., de Silva, R., Peterson, E., Calfee, R., Stahovich, T.: Newton’s Pen: A pen-based tutoring system for statics. Computers & Graphics 32(5), 511–524 (2008)CrossRefGoogle Scholar
  22. 22.
    Radu, I., MacIntyre, B.: Augmented-reality scratch: a children’s authoring environment for augmented-reality experiences. In: IDC 2009, pp. 210–213. ACM, New York (2009)CrossRefGoogle Scholar
  23. 23.
    Song, H., Guimbretière, F., Ambrose, M.A., Lostritto, C.: CubeExplorer: An Evaluation of Interaction Techniques in Architectural Education. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007, Part II. LNCS, vol. 4663, pp. 43–56. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Millner, A., Resnick, M.: Tools for creating custom physical computer interfaces. Demonstration presented at Interaction Design and Children, Boulder, CO (2005)Google Scholar
  25. 25.
    Ullmer, B., Ishii, H.: Emerging frameworks for tangible user interfaces. IBM Systems Journal 39(3.4), 915–931 (2000)CrossRefGoogle Scholar
  26. 26.
    Ullmer, B., Ishii, H., Jacob, R.: Token+ constraint systems for tangible interaction with digital information. ACM Transactions on Computer-Human Interaction (TOCHI) 12(1), 81–118 (2005)CrossRefGoogle Scholar
  27. 27.
    Fishkin, K.: A taxonomy for and analysis of tangible interfaces. Personal and Ubiquitous Computing 8(5), 347–358 (2004)CrossRefGoogle Scholar
  28. 28.
    Fitzmaurice, G.: Graspable user interfaces. PhD thesis, Citeseer (1996)Google Scholar
  29. 29.
    Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: CHI 1997, pp. 234–241. ACM, New York (1997)CrossRefGoogle Scholar
  30. 30.
    Hornecker, E., Dünser, A.: Of pages and paddles: Children’s expectations and mistaken interactions with physical-digital tools. Interacting with Computers 21(1-2), 95–107 (2009)CrossRefGoogle Scholar
  31. 31.
    Mcgee, D.R.: Augmenting environments with multimodal interaction. PhD thesis, Oregon Health & Science University (2003) AAI3100651Google Scholar
  32. 32.
    Klemmer, S.R., Landay, J.A.: Toolkit support for integrating physical and digital interactions. Human-Computer Interaction 24(3), 315–366 (2009)CrossRefGoogle Scholar
  33. 33.
    Zufferey, G., Jermann, P., Dillenbourg, P.: A tabletop learning environment for logistics assistants: activating teachers. In: Proceedings of the Third IASTED International Conference on Human Computer Interaction, HCI 2008, pp. 37–42. ACTA Press, Anaheim (2008)Google Scholar
  34. 34.
    Cuendet, S., Bonnard, Q., Kaplan, F., Dillenbourg, P.: Paper interface design for classroom orchestration. In: Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2011, pp. 1993–1998. ACM, New York (2011)CrossRefGoogle Scholar
  35. 35.
    Dillenbourg, P., Zufferey, G., Alavi, H.S., Jermann, P., Do, L.H.S., Bonnard, Q., Cuendet, S., Kaplan, F.: Classroom orchestration: The third circle of usability. In: Connecting Computer-Supported Collaborative Learning to Policy and Practice: CSCL 2011 Conference Proceedings. Volume I - Long Papers. International Society of the Learning Sciences, pp. 510–517 (2011)Google Scholar
  36. 36.
    Cohen, E.: Restructuring the classroom: Conditions for productive small groups. Review of Educational Research 64(1), 1 (1994)Google Scholar
  37. 37.
    Do-Lenh, S., Kaplan, F., Dillenbourg, P.: Paper-based concept map: the effects of tabletop on an expressive collaborative learning task. In: Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, BCS-HCI 2009, pp. 149–158. British Computer Society, Swinton (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Quentin Bonnard
    • 1
  • Himanshu Verma
    • 1
  • Frédéric Kaplan
    • 1
  • Pierre Dillenbourg
    • 1
  1. 1.CRAFTÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations