On Graph-Associated Matrices and Their Eigenvalues for Optical Character Recognition

  • Miriam Schmidt
  • Günther Palm
  • Friedhelm Schwenker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7477)


In this paper, the classification power of the eigenvalues of six graph-associated matrices is investigated and evaluated on a benchmark dataset for optical character recognition. The extracted eigenvalues were utilized as feature vectors for multi-class classification using support vector machines. Each graph-associated matrix contains a certain type of geometric/spacial information, which may be important for the classification process. Classification results are presented for all six feature types, as well as for classifier combinations at decision level. For the decision level combination probabilistic output support vector machines have been applied. The eigenvalues of the weighted adjacency matrix provided the best classification rate of 89.9 %. Here, almost half of the misclassified letters are confusion pairs, such as I-L and N-Z. This classification performance can be increased by decision fusion, using the sum rule, to 92.4 %.


graph classification weighted adjacency matrix spectrum support vector machine 


  1. 1.
    Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications, 3rd edn. Vch Verlagsgesellschaft Mbh (1998)Google Scholar
  2. 2.
    Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. Oxford University Press (1997)Google Scholar
  3. 3.
    Brouwer, A.E., Haermers, W.H.: Spectra of Graphs. Universitext. Springer (2012)Google Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1990)Google Scholar
  5. 5.
    Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13(3), 353–362 (1983)zbMATHGoogle Scholar
  6. 6.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2230 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)CrossRefGoogle Scholar
  9. 9.
    Schmidt, M., Schwenker, F.: Classification of Graph Sequences Utilizing the Eigenvalues of the Distance Matrices and Hidden Markov Models. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 325–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)zbMATHCrossRefGoogle Scholar
  11. 11.
    Riesen, K., Neuhaus, M., Bunke, H.: Graph Embedding in Vector Spaces by Means of Prototype Selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer (2005)Google Scholar
  13. 13.
    Bollobás, B.: Modern Graph Theory, 2nd edn. Graduate Texts in Mathematics. Springer (2002)Google Scholar
  14. 14.
    Vapnik, V.N.: The nature of statistical learning theory, 2nd edn. Statistics for Engineering and Information Science. Springer (1999)Google Scholar
  15. 15.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer (2007)Google Scholar
  16. 16.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press (2002)Google Scholar
  17. 17.
    Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite Graph Matching for Computing the Edit Distance of Graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miriam Schmidt
    • Günther Palm
      • Friedhelm Schwenker

        There are no affiliations available

        Personalised recommendations