
On Graph-Associated Matrices and Their

Eigenvalues for Optical Character Recognition

Miriam Schmidt, Günther Palm, and Friedhelm Schwenker

Institute of Neural Information Processing,
University of Ulm, 89069 Ulm, Germany

{miriam.k.schmidt,guenther.palm,friedhelm.schwenker}@uni-ulm.de
http://www.uni-ulm.de/in/neuroinformatik.html

Abstract. In this paper, the classification power of the eigenvalues of
six graph-associated matrices is investigated and evaluated on a bench-
mark dataset for optical character recognition. The extracted eigenvalues
were utilized as feature vectors for multi-class classification using sup-
port vector machines. Each graph-associated matrix contains a certain
type of geometric/spacial information, which may be important for the
classification process. Classification results are presented for all six fea-
ture types, as well as for classifier combinations at decision level. For the
decision level combination probabilistic output support vector machines
have been applied. The eigenvalues of the weighted adjacency matrix
provided the best classification rate of 89.9 %. Here, almost half of the
misclassified letters are confusion pairs, such as I -L and N -Z. This clas-
sification performance can be increased by decision fusion, using the sum
rule, to 92.4 %.

Keywords: graph classification, weighted adjacency matrix, spectrum,
support vector machine.

1 Introduction

Spectral graph theory is an important branch in the area of graph classification.
Matrices associated with graphs, e.g. the adjacency matrices, contain essential
information about the graph’s connectivity [1]. This information is also included
in the eigenvalues of the adjacency matrix which build the so-called spectrum.
The spectrum of a graph exhibits some important properties, which make them
ideal candidates for classification tasks [2],[3].

First, the spectrum is invariant with respect to the labeling of the nodes.
Two graphs, which only differ in the labeling, are called isomorph to each other
and the graph isomorphism problem (the computation, if two graphs are iso-
morph) belongs to the NP-complete problems. These problems build a subset
of NP problems, which are defined as decision problems whose solutions can
be verified in polynomial time, but the time required to solve the problems in-
creases quickly [4]. The graph isomorphism problem occurs, if one has to match
the nodes of two graphs to calculate, for example, the graph edit distance [5],[6].

N. Mana, F. Schwenker, and E. Trentin (Eds.): ANNPR 2012, LNAI 7477, pp. 104–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.uni-ulm.de/in/neuroinformatik.html

On Graph-Associated Matrices and Their Eigenvalues 105

Hereby, a distance between two graphs is calculated, taking the number and cor-
responding costs of operations (deleting or inserting nodes or edges, relabeling)
into account which are needed to transform one graph into the other. By using
the spectrum as feature of the graph, it is not necessary to deal with this match-
ing problem. However, if two graphs are just flipped or rotated, the spectrum
does not provide the ability to distinguish these isomorph graphs.

Furthermore, if the underlying matrix is real and symmetric, the eigenvalues
are also real. Hence, the eigenvalues can be used to map the graphs in a coor-
dinate system and use well known clustering or classification algorithms. This
method is called spectral embedding [7],[8].

In some applications, graphical representations of different orders have to be
considered. In the underlying data set (see Sect. 4) are graphs with one node
up to graphs with eight nodes. This can be easily accomplished by using only a
distinct subset of the eigenvalues, e.g. the first three eigenvalues [9].

But one big restriction to the adjacency matrix is that it includes no infor-
mation about the length of the edges in the graph. It contains just the binary
information, if there is an edge or not. If two graphs have the same edges, but
differ in the stretching of the graph, it is impossible to distinguish them by us-
ing the adjacency matrices, because they are exactly the same. Thus, to include
the information about the stretching, the weighted adjacency matrices (with the
lengths of the edges as labels) can be used [10]. In this case, the binary values
in the matrices are replaced by the labels of the corresponding edges.

In this paper, the power of the principal eigenvalues of six different graph-
associated matrices for the spectral classification is investigated. Each matrix
((weighted) adjacency matrix, (weighted) Laplacian matrix and (weighted) ad-
jacency matrix of the complement graph) includes different information, which
can be crucial for the classification or needless. Classification results are pre-
sented for all six feature types and by investigating the miss-classified samples,
we were able to differentiate the qualities of the different matrices. To improve
the classification performance, we also utilized classifier combinations at deci-
sion level. For the decision level combination probabilistic output support vector
machines habe been applied.

As application data set, we used the capital letter data set of the IAM Graph
Database Repository1 because of its publicity, its complexity and its accessibility.
Our classification results are below the best performance on this dataset [11],
but the aim was not to outperform the existing classification approaches but to
investigate different spectra for classification problems.

The rest of the paper is organized as follows: First, in Sect. 2 the essential
notations in (spectral) graph theory are provided. The illustration of the support
vector machine classifier in Sect. 3 is followed by the data description including
the explanation of the feature extraction in Sect. 4. In Sect. 5 the experiments
and the results are presented before the paper will be completed by a summary
and conclusion.

1 Databases of the Institute of Computer Science and Applied Mathematics in Bern,
Switzerland. http://www.iam.unibe.ch/fki/databases/iam-graph-database

http://www.iam.unibe.ch/ fki/databases/iam-graph-database

106 M. Schmidt, G. Palm, and F. Schwenker

2 Graph Associated Matrices

This section provides a brief introduction in graph theory. The textbooks [12]
and [13] are recommended for extensive information about these topics.

An undirected graph is defined as a pair G = (V,E), consisting of a finite set
of nodes V (G) = {v1, ..., vn} and a set of edges E(G) = {e1, ..., em}, which are
unordered two-element subsets of V (G) with e = {vk, vl}, vk, vl in V (G). The
order of a graph is described by |V (G)| = n, the size by |E(G)| = m. The degree
of vk is d(vk) = |{vl ∈ V (G)|{vk, vl} ∈ E(G)}|, k, l = 1, ..., n (the number of
edges connected with vk).

A graph G = (V,E,w) is called weighted graph, with a labeling function w(ei),
which assigns a label to each edge ei. Usually real numbers are used as labels
(e.g. length, cost).

The most known and used graph associated matrices are the adjacency matrix
and the Laplacian matrix. Two nodes vk and vl are adjacent to another if there
exist an edge e = {vk, vl}. The entries ak,l of the adjacency matrix A(G) =
[ak,l]n×n are 1, if there exists an edge e = {vk, vl} (otherwise 0). The Laplacian
matrix is defined as L(G) = D(G) − A(G), where D(G)[dk,l]n×n is the degree
matrix with dk,k = d(vk) and dk,l = 0, for all k unequal l.

The weighted adjacency matrix A�(G) = [a�k,l]n×n of a weighted graph G
contains the labels associated with the edges, instead of just 1: a�k,l = w({vk, vl})
if e = {vk, vl} in E(G) (otherwise 0). Analogously, the weighted Laplacian matrix
is defined as L�(G) = D�(G)−A�(G), using the diagonal weighted degree matrix
D�(G)[d�k,l]n×n with d�k,k =

∑
l a

�
k,l (sum of all edge labels connected with the

node vk).
The complement graph G = (V,E,w) of a graph G = (V,E,w) incorporates

the same node set V as G, and if two nodes are not adjacent in G, they are
adjacent in G. The weighted adjacency matrix of the complement graph will be
named A(G) in the following.

3 Classification in Vector Spaces

There exist a huge amount of classification approaches to classify patterns in
vector spaces [14],[15]. One of the most popular methods is the classification
with support vector machines (SVMs) [16]. These supervised machine learning
methods can be used for binary classification problems. During the training
process, the SVM uses the given data points (training set) with the corresponding
class labels (teachers) to optimize a hyperplane h, which separates the data
points into the two given classes, whereby the two margins/gaps between the
hyperplane and the data points should be as wide as possible. New data points
are then mapped in the same space and the side of the hyperplane they belong
to, decides their class labels.

We also applied a fuzzy output version of the SVMs. Therefore, the distance
of a data point to the hyperplane is calculated (instead of just the algebraic sign)

On Graph-Associated Matrices and Their Eigenvalues 107

and normalized with a logistic sigmoid function. Hence, the output of the SVM
can be treated as a probability to belong to the first class.

If there are more than two classes to distinguish, as is shown in Figure 1, it is
not possible to use just one hyperplane to separate the classes, e.g. a three-class
problem: circles, stars and squares.

There are two possibilities to solve
this problem:

1. One-vs.-One Classifier:

all pairs of possible two-class
SVMs (1-2, 1-3, 2-3) are trained
and the decision is made by vot-
ing.

2. One-vs.-All Classifier:

every class is trained against all
others (1-23, 2-13, 3-12) and the
highest probability leads to the
most likely class. Of course, this
method just works for the fuzzy
output SVMs.

Class 1

C
la
ss
2

Clas
s 3

g
12

h
1

g
11

g32
h3
g31

g 2
2h 2
g 2
1

Fig. 1. Three-class problem, solved by a one-
vs.-all classifier. The hyperplanes h1, h2 and
h3 separate the three classes.

Most often, the two classes are not linearly separable in their dimensional space.
By applying a adequate function on the data points, they are mapped in a much
higher dimensional space, where they are now linearly separable. The optimized
linear hyperplane in this higher dimensional space is then transformed back
in the lower dimensional space, where it becomes a non-linear hyperplane, but
separates the classes. Because this method needs a lot of computation time, the
so-called kernel trick is used. There are special functions, called kernel functions,
which allow the optimization of the hyperplane without really transforming the
data points. For more information on SVMs and RBFs see [16].

4 Data Description and Feature Extraction

The capital letter data set of the IAM Graph Database Repository [17] was
utilized as application data set. It consists of graphs, representing capital letter
drawings of all 15 “straight line” letters in the Roman alphabet (A, E, F, ...). In
order to enforce differences in the samples, weak distortion operations, shifting,
removing or adding lines to a prototype line drawing, were conducted. The nodes
of the graphs represent the ending points of the lines in the drawing and the
edges stand for the lines themselves. Finally, the nodes are labeled with their
two-dimensional coordinates. The data set contains 2250 samples (150 for each
class), equally divided in a test set, a validation set and a training set. Figure 2
shows examples of the graphical representation of the letter A with different
kinds of distortion.

108 M. Schmidt, G. Palm, and F. Schwenker

(a) normal (b) deformation (c) insertion

(d) deletion (e) rotation and insertion (f) multiple insertions

Fig. 2. Sample of the letter A with different kinds of distortion

In order to attain weighted graphs from the data, the following labeling func-
tion was used: w : E(G) → R

+
0 . It attaches to each edge e = {vk, vl} the

Euclidean distance of the two nodes vk and vl.
Afterward, different matrices were extracted from the graph and their eigen-

values were computed. The eigenvalues {λ1, ..., λp} of the adjacency matrix A(G)
of a graph G build the so-called spectrum SP (G) = [λ1, ..., λp] and represent the
zeros of the characteristic polynomial |λI − A(G)|. For the eigenvalues and the
corresponding eigenvectors {x1, ...xp}, the following equation (1) holds:

A(G)xi = λixi, ∀ i = 1, ..., p . (1)

Within one spectrum the eigenvalues were sorted in ascending order. To handle
the different orders of the graphs, and therefore the different sizes of the spectra,
we filled the too short spectra with zero values. The following spectra were
computed:

SPA Spectrum of the adjacency matrix
SPL Spectrum of the Laplacian matrix
SPA� Spectrum of the weighted adjacency matrix
SPL� Spectrum of the weighted Laplacian matrix
SPA� Spectrum of the weighted adjacency matrix of G
SPF� Spectrum of the filled weighted adjacency matrix (in this case, all dis-

tances were included, even if there were no edges, i.e. distance matrix of
the nodes).

On Graph-Associated Matrices and Their Eigenvalues 109

5 Experimental Results

In this section, the classification results for the six different feature types (as
defined in Sect. 4) are presented and the performances are compared. We con-
ducted experiments with One-vs.-One SVMs as well as with One-vs.-All SVMs.
As kernel functions RBF kernels, linear kernels, quadratic kernels and polynomial
kernels were investigated. The validation set allows us to find a suitable stan-
dard deviation σ for the RBF functions, which provided the best classification
performance.

The decisions of the SVMs have to be calculated in different ways: For the
hard results (class labels) we conducted a decision voting of the 105 One-vs.-
One SVMs (One-vs.-One - hard). Because each SVM emit a probability for the
first class (see Sect. 3), it is possible to compute the average rate for each class
too (One-vs.-One - fuzzy). The fuzzy decision for the One-vs.-All SVMs can be
obtained by choosing the maximum probability of the single classes. Table 1
shows the classification rates for the different feature types and the different
SVM models with RBF kernel functions (exemplary with σ = 0.8).

Table 1. Classification results for the spectra SPA, SPL, SPA� , SPL� , SPA� and
SPF� . For all SVMs, radial basis function kernels were used with a specific standard
derivations σ = 0.8. Decisions for the classes by majority vote (One-vs.-One - hard),
by computing the average classification rate for the classes (One-vs.-One - fuzzy) and
by selecting the class with the maximum probability (One-vs.-All - fuzzy).

Feature type One-vs.-One One-vs.-All

hard fuzzy fuzzy

SPA 0.491 0.557 0.179

SPL 0.232 0.475 0.192

SPA� 0.645 0.867 0.897

SPL� 0.493 0.803 0.799

SPA� 0.292 0.825 0.845

SPF� 0.364 0.745 0.760

The hard decisions of the One-vs.-One SVMs lead to the lowest classification
rates. It is unlikely that all 14 SVMs, which are responsible for one letter, emit
this letter but it frequently happens that a few wrong decisions lead to a wrong
winner. The emitted probabilities of the SVMs revealed, that the correct letter is
often the second or the third winner. By including the probabilities in the calcu-
lation (fuzzy decisions) we could keep this information. The fuzzy decisions leads
to a significant (p = 0.03) improvement of the classification results. Although,
the One-vs.-All SVMs achieved the highest classification fuzzy rate (89.7 % for

110 M. Schmidt, G. Palm, and F. Schwenker

SPA�), the average fuzzy rate (for all spectra) of the One-vs.-One classifiers with
71.2 % is higher than the average of the One-vs.-All classifiers with 61.2 %.

Table 2 shows the best models for the six feature types, including the most
suitable assignment for the standard deviation σ of the RBFs (range of σ between
0.5 and 3.0).

Table 2. Highest achieved classification rates for the different spectra SPA, SPL, SPA� ,
SPL� , SPA� and SPF� , the responsible model and the most suitable assignment for σ

Feature type Classification method σ Classification rate

SPA One-vs.-One - fuzzy 0.8 0.557

SPL One-vs.-One - fuzzy 0.8 0.474

SPA� One-vs.-All - fuzzy 1.0 0.899

SPL� One-vs.-One - fuzzy 0.6 0.813

SPA� One-vs.-All - fuzzy 1.0 0.847

SPF� One-vs.-One - fuzzy 1.5 0.777

The spectra of the adjacency matrices (SPA) and the Laplacian matrices
(SPL), with no further information about the shape of the graph, provide the
lowest classification rates. This is clear if one imagines the following simple ex-
ample: the letter M and the letter W have the same number of nodes and the
same edges between them. W is just a flipped version of M. Because the sorted
eigenvalues and therefore the spectrum of these two matrices are invariant with
respect to the labeling of the nodes, they are exactly the same.

By including all distances (SPF�), the information about the characteristic
shape of the letter gets lost. Letters with the same number of nodes only differ
in the pairwise distances of the nodes but not in the number of non-zero entries
in the matrices.

With the spectra of the Laplacian matrix (SPL�) and the spectra of the ad-
jacency matrix of the complement graph (SPA�), classification rates over 80 %
could be achieved, but the spectra of the weighted adjacency matrices (SPA�)
provided the highest classification rate with 89.9 % (see Table 2). The informa-
tion about the characteristic shape of the letters is included in all these features,
i.e. where the edges are and also the lengths of the edges.

The difference between the recognition rates of the adjacency matrices (SPA

and SPA�) and the Laplacian matrices (SPL and SPL�) is not significant (p =
0.23), however within this experiment, the matrices with the zeros on the diag-
onal A and A� lead to a slightly higher performance.

Table 3 shows the confusion matrix of the 15 One-vs.-All SVMs for the spec-
trum of the weighted adjacency matrix SPA� . The columns refer to the actual

On Graph-Associated Matrices and Their Eigenvalues 111

Table 3. Confusion matrix of the 15 One-vs.-All SVMs for the feature SPA� (spectrum
of the weighted adjacency matrix). The columns refer to the actual classes and the rows
to the identified classes.

actual class

A E F H I K L M N T V W X Y Z

A 46 3 0 0 0 0 2 0 0 0 0 0 0 0 0

E 4 43 3 2 0 0 0 0 0 0 0 0 0 0 0

F 0 2 47 1 0 4 0 0 0 0 0 0 0 0 0

H 0 2 0 45 0 2 0 0 0 0 0 0 0 0 0

I 0 0 0 0 41 0 3 0 0 0 0 0 0 0 0

K 0 0 0 2 0 42 0 0 0 0 0 0 0 0 0

L 0 0 0 0 8 1 43 1 0 0 0 0 0 0 0

M 0 0 0 0 0 1 2 47 0 0 0 3 1 0 0

N 0 0 0 0 0 0 0 0 47 0 2 1 0 0 6

T 0 0 0 0 0 0 0 0 1 49 0 0 0 3 0

V 0 0 0 0 0 0 0 0 1 0 46 1 1 0 0

W 0 0 0 0 0 0 0 0 1 1 0 42 2 0 1

X 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0

Y 0 0 0 0 0 0 1 2 0 0 0 3 0 47 0

id
en

ti
fi
ed

cl
a
ss

Z 0 0 0 0 1 0 1 0 0 0 2 0 0 0 43

0.92 0.86 0.94 0.90 0.82 0.84 0.86 0.94 0.94 0.98 0.92 0.84 0.92 0.94 0.86

classes and the rows to the identified classes. The entries of the matrix are the
number of letters (each letter appears 50 times in the data set). The last row
contains the classification rates for each class.

The confusion matrix shows, that there are some letters, i.e. pairs of letters,
which seem more difficult to distinguish than others. Almost 15 % (11 out of
76) of the misclassified letters are confusions of the letters I -L. The other eye-
catching pairs are A-E with almost 10 %, N -Z with almost 8 % and E -F with
more than 6 % of the misclassification rate. These results are not really surprising
because the pair building letters are similar to each other, e.g. one edge more or
rotated.

The experiments show, it is essential to choose an underlying matrix, which
contains the important information to maintain the differences between the
classes. In some cases, the crucial information may be the number of edges,
then the adjacency matrix can be appropriate. In this case, the graphs vary in
their shape, which depends on the existence of the edges and even more on their
length and hence, it was necessary to include this relevant information in the
features.

112 M. Schmidt, G. Palm, and F. Schwenker

5.1 Decision Fusion of the Different Outputs

To probably enhance the classification performance, we computed combinations
of the One.-vs.-All - fuzzy classification outputs of the different feature types. In
some cases, the highest probability leads to a wrong class, but the second highest
would have been the correct class. Therefore, we added the probabilities of the
different SVMs class-wise, before we chose the maximum to get the identified
class. The best three combinations with their overall classification are (for the
individual classification performances, see Table 1):

1. SPA� + SPA� + SPF� 92.4 %
2. SPA� + SPL� + SPA� + SPF� 92.1 %
3. SPA + SPA� + SPL� + SPA� + SPF� 92.0 %

The results show that through combination of the individual classifiers on deci-
sion level, the misclassification rate can be decreased by 24 %. The combination
with the SVMs, trained with SPA� , SPA� and SPF� has the highest overall
classification rate.

5.2 Comparison with Related Work

To compare our results with other approaches, we selected papers where the
same data set was utilized. In [18], bipartite graph matching for computing the
edit distance was used and the distance measure was then utilized to classify the
graphs with a 5-nearest-neighbor classifier. The highest classification rate with
84 % was achieved with their own method (Munkres’ Algorithm). As reference
method they implemented the optimal tree-search algorithm for computing the
graph edit distance, introduced in [19] and [5], which achieved a recognition rate
of 82.7 %. However, these are completely different methods, since these methods
are graph-based and not feature-based.

As mentioned in the introduction, the actually best performance with 98.9 %
on this data was achieved by [11]. In this paper, they “aim at bridging the gap
between the domain of feature based and graph based object representations”.
They calculate the graph edit distances between one graph and m chosen proto-
types and utilize thism-dimensional dissimilarity measure to classify the graph in
a vector space using a SVM classifier. Although this method achieved a high clas-
sification performance, it is depending on a lot of variables and time-consuming
calculations: the calculation of the graph edit distance is strongly connected to
the order of the graphs (which makes it inappropriate for large graphs) and a
good selection of the prototypes may be crucial for the classification process.

6 Discussion and Future Work

Using the spectrum of a graph as feature for classification is a well known
method. The eigenvalues of graph-associated matrices can be utilized to

On Graph-Associated Matrices and Their Eigenvalues 113

embed the graphs in a vector space and use standardized methods, e.g. SVMs,
for the classification. There are many matrices which can be extracted from of a
graph and we investigated the power of six of them for classification: spectrum of
the adjacency matrix (SPA), spectrum of the Laplacian matrix (SPL), spectrum
of the weighted adjacency matrix (SPA�), spectrum of the weighted Laplacian
matrix (SPL�), spectrum of the weighted adjacency matrix of G (SPA�) and the
spectrum of the filled weighted adjacency matrix (SPF�). As label for each edge,
the Euclidean distances between the two connected nodes were utilized.

As data set, we used the capital letter data set of the IAM Graph Database
Repository (see Sect. 4) because is has become a benchmark data set for graph
classification and our results can easily be compared to other approaches.

The weighted versions (SPA� ,SPL� and also SPA�) include more information
than the others and generate classification rates between 80 % and 90 %. The
misclassified letters build confusion pairs, that means, there are some couples
which are difficult to distinguish. The following pairs I -L, A-E, N -Z and E -F
cause almost 40 % of the misclassified letters. One reason for the poor distinct-
ness is, that the letters are similar to each other (e.g. just one edge more) and
the other reason is that the spectrum is invariant with respect to the rotation of
the graph, more precisely the labeling of the nodes (N ist just a rotated Z). In
consideration of this fact, the classification performance is absolutely satisfying.

By combining the outputs depending on different features (decision fusion),
the misclassification rate can be decreased by 24 %. Each of the underlying
matrices contain information, which the others lack and the combination can
benefit from all. With a classification rate of 92.4 % we are below the best
classification performance on the data set with 98.9 % [11]. However, we did not
aim at outperforming other approaches, but to investigate the power of different
graph-associated matrices for classification. It is absolutely important to choose
the graph-associated matrix which contains the diverse information needed for
the classification task and in this case, the length between the nodes is highly
relevant.

The next step is to utilize more complex data sets and investigate the eigenval-
ues of the weighted adjacency matrices (weighted with the Euclidean distances)
in a more theoretical way. Is there a connection between a eventually existing
distribution of the distances in the matrices and the eigenvalues of them? How
big is the influence of the connectivity in the graph? We started our research
with an artificial generated data set.

Acknowledgments. The work of Miriam Schmidt is supported by a schol-
arship of the Graduate School Mathematical Analysis of Evolution, Informa-
tion and Complexity of the University of Ulm. The work of Günther Palm and
Friedhelm Schwenker is supported by the Transregional Collaborative Research
Center SFB/ TRR 62 Companion-Technology for Cognitive Technical Systems,
funded by the German Research Foundation (DFG).

114 M. Schmidt, G. Palm, and F. Schwenker

References

1. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications,
3rd edn. Vch Verlagsgesellschaft Mbh (1998)

2. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics, vol. 92. Oxford University Press (1997)

3. Brouwer, A.E., Haermers, W.H.: Spectra of Graphs. Universitext. Springer (2012)
4. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co. (1990)
5. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for

pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13(3),
353–362 (1983)

6. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

7. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern
Recognition 36(10), 2213–2230 (2003)

8. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

9. Schmidt, M., Schwenker, F.: Classification of Graph Sequences Utilizing the Eigen-
values of the Distance Matrices and Hidden Markov Models. In: Jiang, X., Ferrer,
M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 325–334. Springer, Hei-
delberg (2011)

10. Umeyama, S.: An eigendecomposition approach to weighted graph matching prob-
lems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5),
695–703 (1988)

11. Riesen, K., Neuhaus, M., Bunke, H.: Graph Embedding in Vector Spaces by Means
of Prototype Selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS,
vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

12. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer (2005)

13. Bollobás, B.: Modern Graph Theory, 2nd edn. Graduate Texts in Mathematics.
Springer (2002)

14. Vapnik, V.N.: The nature of statistical learning theory, 2nd edn. Statistics for
Engineering and Information Science. Springer (1999)

15. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer (2007)

16. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. Adaptive Computation and Machine Learn-
ing. MIT Press (2002)

17. Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pat-
tern Recognition and Machine Learning. In: da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.)
SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

18. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite Graph Matching for Computing the
Edit Distance of Graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS,
vol. 4538, pp. 1–12. Springer, Heidelberg (2007)

19. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1(4), 245–253 (1983)

	On Graph-Associated Matrices and Their
Eigenvalues for Optical Character Recognition
	Introduction
	Graph Associated Matrices
	Classification in Vector Spaces
	Data Description and Feature Extraction
	Experimental Results
	Decision Fusion of the Different Outputs
	Comparison with Related Work

	Discussion and Future Work
	References

