Skip to main content

Stores as Substrate Sources of Respiration: Effects of Nitrogen Stress and Day Length

  • Chapter
  • First Online:
Growth and Defence in Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

  • 2361 Accesses

Abstract

Dark respiration is a major drain for carbon substrates in plants. Until recently, little was known about the quantitative importance and functional characteristics of stores as substrate suppliers for plant respiration under stresses. Here we review recent work with Lolium perenne L., a perennial grass, subject to nitrogen stress or regular (diurnal) interruptions of photosynthetic activity. This work responds to the following questions: What is the actual contribution of stores (relative to current photosynthate) to the substrate supply of whole plant respiration? What is the size and what are the kinetic properties of the stores which supply substrate for respiration? How do these characteristics respond to nitrogen stress and day/night cycles? The investigations were performed with continuous 13C labelling of plants, monitoring the kinetics of 13C-tracer appearance in respiratory CO2 and compartmental modelling of the tracer data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amthor JS (1989) Respiration and crop productivity. Springer, New York

    Book  Google Scholar 

  • Amthor JS (2000) The McCree – de Wit – Penning de Vries – Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    Article  CAS  Google Scholar 

  • ap Rees T (1980) Assessment of the contribution of metabolic pathways to plant respiration. In: Davies DD (ed) The biochemistry of plants: a comprehensive treatise, vol 2. Academic, San Diego, pp 1–29

    Google Scholar 

  • Atkins GL (1969) Multicompartment models in biological systems. Methuen, London

    Google Scholar 

  • Avice JC, Ourry A, Lemaire G, Boucoud J (1996) Nitrogen and carbon flows estimated by 15N and 13C pulse-chase labeling during regrowth of alfalfa. Plant Physiol 112:281–290

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borland AM, Farrar JF (1985) Diel patterns of carbohydrate metabolism in leaf blades and leaf sheaths of Poa annua L. and Poa jemtlandica (Almq.) Richt. New Phytol 100:519–531

    Article  CAS  Google Scholar 

  • Borland AM, Farrar JF (1988) Compartmentation and fluxes of carbon in leaf blades and leaf sheaths of Poa annua L. and Poa x jemtlandica (Almq.) Richt. Plant Cell Environ 11:535–543

    Article  Google Scholar 

  • Brouquisse R, Gaudillere JP, Raymond P (1998) Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol 117:1281–1291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bürkle L, Hibberd JM, Quick WP, Kühn C, Hirner B, Frommer WB (1998) The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol 118:59–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson JL, Milthorpe FL (1966a) Leaf growth in Dactylis glomerata following defoliation. Ann Bot 30:173–184

    CAS  Google Scholar 

  • Davidson JL, Milthorpe FL (1966b) The effect of defoliation on the carbon balance in Dactylis glomerata. Ann Bot 30:185–198

    CAS  Google Scholar 

  • Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dungey NO, Davies DD (1982) Protein turnover in the attached leaves of non-stressed and stressed barley seedlings. Planta 154:435–440

    Article  PubMed  CAS  Google Scholar 

  • Farrar JF (1989) Fluxes and turnover of sucrose and fructans in healthy and diseased plants. J Plant Physiol 134:137–140

    Article  CAS  Google Scholar 

  • Farrar SC, Farrar JF (1985) Carbon fluxes in leaf blades of barley. New Phytol 100:271–283

    Article  CAS  Google Scholar 

  • Farrar SC, Farrar JF (1986) Compartmentation and fluxes of sucrose in intact leaf blades of barley. New Phytol 103:645–657

    Article  CAS  Google Scholar 

  • Gamnitzer U, Schäufele R, Schnyder H (2009) Observing 13C labelling kinetics in CO2 respired by a temperate grassland ecosystem. New Phytol 184:376–386

    Article  PubMed  CAS  Google Scholar 

  • Gebbing T, Schnyder H, Kühbauch W (1999) The utilization of pre-anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant Cell Environ 22:851–858

    Article  Google Scholar 

  • Geiger DR, Saunders MA, Cataldo DA (1969) Translocation and accumulation of translocate in the sugar beet petiole. Plant Physiol 44:1657–1665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gerhardt R, Stitt M, Heldt HW (1987) Subcellular metabolite levels in Spinach leaves – regulation of sucrose synthesis during diurnal alterations in photosynthetic partitioning. Plant Physiol 83:399–407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gibon Y, Pyl ET, Sulpice R, Lunn JE, Höhne M, Günther M, Stitt M (2009) Adjustment of growth, diurnal starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ 32:859–874

    Article  PubMed  CAS  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: conceptualization, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186

    Article  Google Scholar 

  • Graber LF (1931) Food reserves in relation to other factors limiting the growth of grasses. Plant Physiol 6:43–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci 16:169–175

    Article  PubMed  CAS  Google Scholar 

  • Hoch G (2007) Cell wall hemicelluloses as mobile carbon stores in non-reproductive plant tissues. Funct Ecol 21:823–834

    Article  Google Scholar 

  • Irving LJ, Robinson D (2006) A dynamic model of Rubisco turnover in cereal leaves. New Phytol 169:493–504

    Article  PubMed  CAS  Google Scholar 

  • Jacquez JA (1996) Compartmental analysis in biology and medicine, 3rd edn. Biomedware, Ann Arbor

    Google Scholar 

  • Klumpp K, Schäufele R, Lötscher M, Lattanzi FA, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ 28:241–250

    Article  CAS  Google Scholar 

  • Kouchi H, Nakaji K, Yoneyama T, Ishizuka J (1985) Dynamics of carbon photosynthetically assimilated in nodulated soya bean plants under steady-state conditions. 3. Time-course study on 13C incorporation into soluble metabolites and respiratory evolution of 13CO2 from roots and nodules. Ann Bot 56:333–346

    CAS  Google Scholar 

  • Kouchi H, Akao S, Yoneyama T (1986) Respiratory utilization of 13C-labelled photosynthate in nodulated root systems of soybean plants. J Exp Bot 37:985–993

    Article  CAS  Google Scholar 

  • Kozlowski TT (1992) Carbohydrate sources and sinks in woody plants. Bot Rev 58:107–222

    Article  Google Scholar 

  • Lattanzi FA, Schnyder H, Thornton B (2005) The sources of carbon and nitrogen supplying leaf growth: assessment of the role of stores with compartmental models. Plant Physiol 137:383–395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant amino acids. Marcel Dekker, New York, pp 1–47

    Google Scholar 

  • Lehmeier CA, Lattanzi FA, Schäufele R, Wild M, Schnyder H (2008) Root and shoot respiration of perennial ryegrass are supplied by the same substrate pools: assessment by dynamic 13C labeling and compartmental analysis of tracer kinetics. Plant Physiol 148:1148–1158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lehmeier CA, Lattanzi FA, Schäufele R, Schnyder H (2010a) Nitrogen deficiency increases the residence time of respiratory carbon in the respiratory substrate supply system of perennial ryegrass. Plant Cell Environ 33:76–87

    PubMed  CAS  Google Scholar 

  • Lehmeier CA, Lattanzi FA, Gamnitzer U, Schäufele R, Schnyder H (2010b) Day-length effects on carbon stores for respiration of perennial ryegrass. New Phytol 188:719–725

    Article  PubMed  Google Scholar 

  • Lötscher M, Gayler S (2005) Contribution of current photosynthates to root respiration of non-nodulated Medicago sativa: effects of light and nitrogen supply. Plant Biol 7:601–610

    Article  PubMed  Google Scholar 

  • Lötscher M, Klumpp K, Schnyder H (2004) Growth and maintenance respiration for individual plants in hierarchically structured canopies of Medicago sativa and Helianthus annuus: the contribution of current and old assimilates. New Phytol 164:305–316

    Article  Google Scholar 

  • Makino A, Osmond B (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96:355–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moorby J, Jarman PD (1975) The use of compartmental analysis in the study of the movement of carbon through leaves. Planta 122:155–168

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi B, Conte MH, Chanton JP, Smith MC, Crumsey J, Ghashghaie J (2009) Does the 13C foliage-respired CO2 and biochemical pools reflect the 13C of recently assimilated carbon? Plant Cell Environ 32:1310–1323

    Article  PubMed  CAS  Google Scholar 

  • Morvan-Bertrand A, Boucaud J, Prud’homme MP (1999) Influence of initial levels of carbohydrates, fructans, nitrogen, and soluble proteins on regrowth of Lolium perenne L. cv Bravo following defoliation. J Exp Bot 50:1817–1826

    Article  CAS  Google Scholar 

  • Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. Oxford University Press, New York

    Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    Article  PubMed  CAS  Google Scholar 

  • Nogués S, Tcherkez G, Cornic G, Ghashghaie J (2004) Respiratory carbon metabolism following illumination in intact French bean leaves using 13C/12C isotope labeling. Plant Physiol 136:3245–3254

    Article  PubMed  PubMed Central  Google Scholar 

  • Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    CAS  Google Scholar 

  • Plaxton WC, Podestá FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Pollock CJ, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol 42:77–101

    Article  CAS  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    Article  CAS  Google Scholar 

  • Prosser J, Farrar JF (1981) A compartmental model of carbon allocation in the vegetative barley plant. Plant Cell Environ 4:303–307

    CAS  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org

  • Rescigno A (2001) The rise and fall of compartmental analysis. Pharmacol Res 44:337–342

    Article  PubMed  CAS  Google Scholar 

  • Rocher JP, Prioul JL (1987) Compartmental analysis of assimilate export in a mature maize leaf. Plant Physiol Biochem 25:531–540

    CAS  Google Scholar 

  • Rufty TW, Huber SC, Volk RJ (1988) Alterations in leaf carbohydrate-metabolism in response to nitrogen stress. Plant Physiol 88:725–730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ryle GJA, Cobby JM, Powell CE (1976) Synthetic and maintenance respiratory losses of 14CO2 in uniculm barley and maize. Ann Bot 40:571–586

    CAS  Google Scholar 

  • Schnyder H (1992) Long-term steady-state labelling of wheat plants by use of natural 13CO2/12CO2 mixtures in an open, rapidly turned-over system. Planta 187:128–135

    Article  PubMed  CAS  Google Scholar 

  • Schnyder H (1993) The role of carbohydrate storage and redistribution in the source-sink relationships of wheat and barley during grain filling – a review. New Phytol 123:233–245

    Article  Google Scholar 

  • Schnyder H, Schäufele R, Lötscher M, Gebbing T (2003) Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant Cell Environ 26:1863–1874

    Article  CAS  Google Scholar 

  • Sicher RC, Kremer DF, Harris WG (1984) Diurnal carbohydrate metabolism of barley primary leaves. Plant Physiol 76:165–169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simpson E, Cooke RJ, Davies DD (1981) Measurement of protein degradation in leaves of Zea mays using [3H]acetic anhydride and tritiated water. Plant Physiol 67:1214–1219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Sullivan JT, Sprague VG (1943) Composition of the roots and stubble of perennial ryegrass following partial defoliation. Plant Physiol 18:656–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tcherkez G, Nogués S, Bleton J, Cornic G, Badeck F, Ghashghaie J (2003) Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol 131:237–244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teixeira EI, Moot DJ, Mickelbart MV (2007) Seasonal patterns of root C and N reserves of lucerne crops (Medicago sativa L.) grown in a temperate climate were affected by defoliation regime. Eur J Agron 26:10–20

    Article  CAS  Google Scholar 

  • Van Iersel MW (2003) Carbon use efficiency depends on growth respiration, maintenance respiration and relative growth rate: a case study with lettuce. Plant Cell Environ 29:1441–1449

    Article  Google Scholar 

  • Volenec JJ, Ourry A, Joern BC (1996) A role for nitrogen reserves in forage regrowth and stress tolerance. Physiol Plant 97:185–193

    Article  CAS  Google Scholar 

  • Wagner W, Keller F, Wiemken A (1983) Fructan metabolism in cereals: induction in leaves and compartmentation in protoplasts and vacuoles. Zeitschrift für Pflanzenphysiologie 112:359–372

    Article  CAS  Google Scholar 

  • Windt CW, Vergeldt FJ, de Jager PA, Van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Winzeler M, Dubois D, Nösberger J (1990) Absence of fructan degradation during fructan accumulation in wheat stems. J Plant Physiol 136:324–329

    Article  CAS  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401:13–28

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schnyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehmeier, C.A., Lattanzi, F.A., Schnyder, H. (2012). Stores as Substrate Sources of Respiration: Effects of Nitrogen Stress and Day Length. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_6

Download citation

Publish with us

Policies and ethics