Predictability of Plant Resource Allocation: New Theory Needed?

  • R. MatyssekEmail author
  • S. Gayler
  • W. zu Castell
  • W. Oßwald
  • D. Ernst
  • H. Pretzsch
  • H. Schnyder
  • J.-C. Munch
Part of the Ecological Studies book series (ECOLSTUD, volume 220)


Predictability is examined in plant responsiveness to stress, along with extents of resource trade-offs in growth/defence allocation, value of conflicting findings for theory development, and eventually, need for new theoretical concepts on the book’s subject. “Opportunities” are summarized plants possess in regulating resource allocation beyond apparent trade-offs and their associated “opportunity costs”, mediating to empirical and theoretical means for enhancing predictability. Acknowledging high functional and structural plasticity, and hence complexity, in plant responsiveness as a key feature of evolutionary success, both empirical capacities of molecular research are summarized in strengthening predictability across spatio-temporal scales and modelling as interacting theoretical concepts. Novel numerical and statistical modelling approaches are comprehended in reconciling conflicting empirical evidence and assessing degrees of universality. Not being unifying renders the “growth–differentiation-balance theory” falsifiable towards mechanistic consolidation as the grounds of advanced theory building. Mechanistic comprehension of plasticity becomes the key to plant system understanding.


Resource Allocation Fine Root Apple Tree Plant Responsiveness Constitutive Defence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baldocchi DD (1993) Scaling water vapor and carbon dioxide exchange from leaves to a canopy: rules and tools. In: Ehleringer JR, Field CB (eds) Scaling physiological processes, leaf to globe. Academic, San Diego, pp 77–114CrossRefGoogle Scholar
  2. Elstner EF, Oßwald WF, Schneider I (1996) Phytopathologie: Allgemeine und biochemische Grundlagen. Spektrum Akademischer, HeidelbergGoogle Scholar
  3. Fleischmann F, Raidl S, Oßwald W (2010) Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ Pollut 158:1051–1060PubMedCrossRefGoogle Scholar
  4. Häberle KH, Nunn A, Reiter I, Werner H, Heller W, Bahnweg G, Gayler S, Lütz C, Matyssek R (2009) Variation of defence-related metabolites in the foliage of adult beech and spruce: a conceptual approach to approximating traded-off carbon. Eur J Forest Res 128:99–108CrossRefGoogle Scholar
  5. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  6. Koricheva J (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176–190CrossRefGoogle Scholar
  7. Koricheva J, Larsson S, Haukioja E, Keinänen M (1998) Regulation od woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226CrossRefGoogle Scholar
  8. Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Chance Biol 11:1387–1401CrossRefGoogle Scholar
  9. Lerdau M, Gershenzon J (1997) Allocation theory and chemical defense. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 265–277CrossRefGoogle Scholar
  10. Loomis WE (1953) Growth and differentiation – an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, pp 1–17Google Scholar
  11. Lorio PL Jr (1988) Growth and differentiation balance relationships in pines affect their resistance to bark beetles (Coleoptera: Scoloytidae). In: Mattson WJ, Levieux J, Bernard-Dagan C (eds) Mechanisms of woody plant defenses against insects: search for pattern. Springer, New York, pp 73–92CrossRefGoogle Scholar
  12. Matyssek R, Schnyder H, Elstner E-F, Munch J-C, Pretzsch H, Sandermann H (2002) Growth and parasite defence in plants: the balance between resource sequestration and retention. Plant Biol 4:133–136CrossRefGoogle Scholar
  13. Matyssek R, Agerer R, Ernst D, Munch J-C, Osswald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedCrossRefGoogle Scholar
  14. Maurer S, Matyssek R (1997) Nutrition and the ozone sensitivity of birch (Betula pendula), II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees 12:11–20CrossRefGoogle Scholar
  15. Oßwald WF (1995) Die Wirt-Parasit-Beziehungen – Bakterien und Pilze als Parasiten. In: Hock B, Elstner EF (eds) Schadwirkungen auf Pflanzen, vol 3. Spektrum Akademischer, Heidelberg, pp 315–369Google Scholar
  16. Popper KR (1969) Logik der Forschung. J.C.B. Mohr (Paul Siebeck), Tübingen, p 441Google Scholar
  17. Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia. doi: 10.1007/s00442-011-2240-5
  18. Ros B, Thümmler F, Wenzel G (2004) Analysis of differentially expressed genes in a susceptible and moderately resistant potato cultivar upon Phytophthora infestans infection. Mol Plant Pathol 5:191–201PubMedCrossRefGoogle Scholar
  19. Rühmann S, Leser C, Bannert M, Treutter D (2002) Relationship between growth, secondary metabolism, and resistance of apple. Plant Biol 4:137–143CrossRefGoogle Scholar
  20. Sandermann H, Matyssek R (2004) Scaling up from molecular to ecological processes. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170, Ecological studies. Springer, Berlin, pp 207–226CrossRefGoogle Scholar
  21. Sibly RM, Vincent JFV (1997) Optimality approaches to resource allocation in woody tissue. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 143–160CrossRefGoogle Scholar
  22. Stamp N (2003) Theory of plant defensive level: example of process and pitfalls in development of ecological theory. Oikos 102:672–678CrossRefGoogle Scholar
  23. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323PubMedCrossRefGoogle Scholar
  24. Vapnik VN (1995) Statistical learning theory. Wiley, New YorkGoogle Scholar
  25. Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373PubMedCrossRefGoogle Scholar
  26. Zangerl AB, Bazzaz FA (1992) Theory and pattern in plant defense allocation. In: Fritz RS, Simms EL (eds) Plant resistance to herbicides and pathogens. University of Chicago Press, Chicago, pp 363–391Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Matyssek
    • 1
    Email author
  • S. Gayler
    • 2
    • 3
  • W. zu Castell
    • 4
  • W. Oßwald
    • 5
  • D. Ernst
    • 6
  • H. Pretzsch
    • 7
  • H. Schnyder
    • 8
  • J.-C. Munch
    • 2
  1. 1.Chair of Ecophysiology of PlantsTechnische Universität MünchenFreisingGermany
  2. 2.Institute of Soil EcologyHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Water & Earth System Science Competence ClusterUniversity of TübingenTübingenGermany
  4. 4.Research Unit Scientific ComputingGerman Research Center for Environmental Health, Helmholtz Zentrum MünchenNeuherbergGermany
  5. 5.Phytopathology of Woody PlantsTechnische Universität MünchenFreisingGermany
  6. 6.Institute of Biochemical Plant BiologyHelmholtz Zentrum MünchenNeuherbergGermany
  7. 7.Chair of Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  8. 8.Lehrstuhl für GrünlandlehreTechnische Universität MünchenFreisingGermany

Personalised recommendations