Skip to main content

Growth and Space Use in Competitive Interactions Between Juvenile Trees

  • Chapter
  • First Online:
Growth and Defence in Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

Abstract

We review a series of growth chamber experiments on the effects of elevated carbon dioxide (CO2) and ozone (O3) on Norway spruce (Picea abies Karst.) and European beech (Fagus sylvatica L.), grown in isolation or under intra- and inter-specific competition. Focus is on the mechanistic grounds of competitive interactions between the two tree species and on the question of whether competition affects the responses of plants to the gaseous treatments. We found competitive interactions between plants to significantly alter impacts of atmospheric CO2 and O3 concentrations. It appears that the more intense the competition is, the stronger the response to other stressors may be modified. Hence, responses of plants grown in isolation are of only limited relevance for plants grown in mono- or mixed cultures. In situations with intense competitive interactions, the efficient occupation of space represents an effective mechanism to be competitive by increasing the resource accessibility relative to competing neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Daigo MJ, Gayler S, Priesack E, Matyssek R, Grams TEE (submitted) The mode of competition for light and water among juvenile beech and spruce under ambient and elevated levels of O3 and CO2

    Google Scholar 

  • Falge E, Graber W, Siegwolf R, Tenhunen JD (1996) A model of the gas exchange response of Picea abies to habitat conditions. Trees 10(5):277–287

    Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • Fowler D, Amann M, Anderson R, Ashmore M, Cox P, Depledge M, Derwent D, Grennfelt P, Hewitt N, Hov O, Jenkin M, Kelly F, Liss P, Pilling M, Pyle J, Slingo J, Stefenson D (2008) Science policy report 15/08: ground-level ozone in the 21st century: future trends, impacts and policy implications. The Royal Society, London, UK, p 132

    Google Scholar 

  • Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I – Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283(1–2):83–98. doi:10.1007/s11104-004-7903-0

    Article  CAS  Google Scholar 

  • Gayler S, Grams TEE, Kozovits AR, Winkler JB, Luedemann G, Priesack E (2006) Analysis of competition effects in mono- and mixed cultures of juvenile beech and spruce by means of the plant growth simulation model PLATHO. Plant Biol 8(4):503–514

    Article  PubMed  CAS  Google Scholar 

  • Grams TEE, Andersen CP (2007) Competition for resources in trees: physiological versus morphological plasticity. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 68. Springer, Heidelberg, pp 356–381

    Chapter  Google Scholar 

  • Grams TEE, Lüttge U (2011) Space as a resource. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 72. Springer, Heidelberg, pp 349–370

    Google Scholar 

  • Grams TEE, Matyssek R (1999) Elevated CO2 counteracts the limitation by chronic ozone exposure on photosynthesis in Fagus sylvatica L.: comparison between chlorophyll fluorescence and leaf gas exchange. Phyton 39(4):31–39

    CAS  Google Scholar 

  • Grams TEE, Matyssek R (2010) Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Environ Pollut 158:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Grams TEE, Anegg S, Häberle KH, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144(1):95–107

    Article  CAS  Google Scholar 

  • Grams TEE, Kozovits AR, Reiter IM, Winkler JB, Sommerkorn M, Blaschke H, Häberle KH, Matyssek R (2002) Quantifying competitiveness in woody plants. Plant Biol 4(2):153–158

    Article  Google Scholar 

  • Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical plant growth analysis. Ann Bot 90(4):485–488

    Article  PubMed  CAS  Google Scholar 

  • Jungermann A (1998) Photosynthese, Wasserbedarf und Allokation in Buche (Fagus sylvatica L.) unter kombinierten CO2/O3-Regimen. Diploma thesis, FH Weihenstephan

    Google Scholar 

  • Körner C (2003a) Carbon limitation in trees. J Ecol 91(1):4–17

    Article  Google Scholar 

  • Körner C (2003b) Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philos Transact R Soc Lond A Math Phys Eng Sci 361(1810):2023–2041

    Article  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172(3):393–411

    Article  PubMed  Google Scholar 

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401

    Article  Google Scholar 

  • Kozovits AR, Matyssek R, Winkler JB, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167(1):181–196

    Article  PubMed  Google Scholar 

  • Küppers M (1989) Ecological significance of above-ground architectural patterns in woody plants – a question of cost-benefit relationships. Trends Ecol Evol 4(12):375–379

    Article  PubMed  Google Scholar 

  • Landhausser SM (2011) Aspen shoots are carbon autonomous during bud break. Trees 25(3): 531–536

    Article  Google Scholar 

  • Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H Jr (1997) Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. In: Sandermann HJ, Wellburn AR, Heath RL (eds) Ecological studies, vol 127. Springer, Berlin, pp 163–200

    Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7(6):640–649

    Article  PubMed  CAS  Google Scholar 

  • Luedemann G, Matyssek R, Winkler JB, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60

    Article  CAS  Google Scholar 

  • Matyssek R, Schulze ED (1987) Heterosis in hybrid larch (Larix decidua × leptolepis) II. Growth characteristics. Trees 1:225–231

    Article  Google Scholar 

  • Matyssek R, Karnosky DF, Wieser G, Percy K, Oksanen E, Grams TEE, Kubiske M, Hanke D, Pretzsch H (2010a) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158(6):1990–2006

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle K-H (2010b) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532

    Article  PubMed  CAS  Google Scholar 

  • Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175(1):11–28

    Article  PubMed  CAS  Google Scholar 

  • Navas ML, Garnier E, Austin MP, Gifford RM (1999) Effect of competition on the responses of grasses and legumes to elevated atmospheric CO2 along a nitrogen gradient: differences between isolated plants, monocultures and multi- species mixtures. New Phytol 143(2):323–331

    Article  Google Scholar 

  • Payer HD, Blodow P, Köfferlein M, Lippert M, Schmolke W, Seckmeyer G, Seidlitz HK, Strube D, Thiel S (1993) Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. In: Schulze ED, Mooney HA (eds) Ecosystems Research Report No. 6: design and execution of experiments on CO2 enrichment. Commission European Communities, Brussels, pp 127–145

    Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157(2):175–198

    Article  Google Scholar 

  • Reiter IM, Häberle KH, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146(3):337–349

    Article  PubMed  CAS  Google Scholar 

  • Ritter W, Lehmeier CA, Winkler JB, Matyssek R, Grams TEE (submitted) Contrasting responses in carbon allocation of juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies) to competition and disturbance by ozone

    Google Scholar 

  • Rodenkirchen H, Göttlein A, Kozovits AR, Matyssek R, Grams TEE (2009) Nutrient contents and efficiencies of beech and spruce saplings as influenced by competition and O3/CO2 regime. Eur J Forest Res 128:117–128

    Article  CAS  Google Scholar 

  • Schwinning S (1996) Decomposition analysis of competitive symmetry and size structure dynamics. Ann Bot 77:47–57

    Article  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455

    Article  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448(7155):791–794

    Article  PubMed  CAS  Google Scholar 

  • Spinnler D, Egli P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees 16(6):423–436

    Article  CAS  Google Scholar 

  • Sprugel DG, Hinckley TM, Schaap W (1991) The theory and practice of branch autonomy. Annu Rev Ecol Syst 22:309–334

    Article  Google Scholar 

  • Syring KM, Claassen N (1995) Estimation of the influx and the radius of the depletion zone developing around a root during nutrient uptake. Plant Soil 175(1):115–123

    Article  CAS  Google Scholar 

  • Thiel S, Döhring T, Köfferlein M, Kosak A, Martin P, Seidlitz HK (1996) A phytotron for plant stress research: how far can artificial lighting compare to natural sunlight? J Plant Physiol 148:456–463

    Article  CAS  Google Scholar 

  • Volpe G, Bianco LB, Rieger M (2008) Carbon autonomy of peach shoots determined by 13C photoassimilate transport. Tree Physiol 28(12):1805–1812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Drs. H.-D. Payer and H. K. Seidlitz (Helmholtz Zentrum München—German Research Center for Environmental Health) as well as their teams for excellent and unstinting cooperation and support during the experiments in the phytotron facility. In particular, the Master and PhD-students of this project, i.e., A. Jungermann, Dr. A. R. Kozovits, G. Luedemann and Dr. W. Ritter, is thanked. We gratefully acknowledge the skilful assistance by T. Feuerbach, J. Heckmair, P. Kuba, J. Lebherz, H. Lohner and I. Süß. We thank Drs. C. Andersen (EPA, Corvallis, Oregon, USA), F. Fleischmann (Pathology of Woody Plants, Technische Universität München, Germany) and K.-H. Häberle (Ecophysiology of Plants, Technische Universität München, Germany) for valuable discussions. Dr. U. Lüttge (Institute of Botany, Darmstadt University, Germany) is thanked for valuable comments on an earlier version of this manuscript. The investigation was funded through SFB 607 “Growth and Parasite Defense, Project B5” by the “Deutsche Forschungsgemeinschaft” (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. E. Grams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grams, T.E.E., Daigo, M.J., Winkler, J.B., Gayler, S., Matyssek, R. (2012). Growth and Space Use in Competitive Interactions Between Juvenile Trees. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_12

Download citation

Publish with us

Policies and ethics