Skip to main content

Interactive Perception of Articulated Objects

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

We present a skill for the perception of three-dimensional kinematic structures of rigid articulated bodies with revolute and prismatic joints. The ability to acquire such models autonomously is required for general manipulation in unstructured environments. Experiments on a mobile manipulation platform with real-world objects under varying lighting conditions demonstrate the robustness of the proposed method. This robustness is achieved by integrating perception and manipulation capabilities: the manipulator interacts with the environment to move an unknown object, thereby creating a perceptual signal that reveals the kinematic properties of the object. For good performance, the perceptual skill requires the presence of trackable visual features in the scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguelov, D., Koller, D., Parker, E., Thrun, S.: Detecting and modeling doors with mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3777–3784 (2004)

    Google Scholar 

  2. Blake, A., Yuille, A. (eds.): Active Vision. MIT Press (1992)

    Google Scholar 

  3. Chiuso, A., Favaro, P., Jin, H., Soatto, S.: Structure from motion causally integrated over time. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 523–535 (2002)

    Article  Google Scholar 

  4. Delage, E., Lee, H., Ng, A.Y.: A dynamic bayesian network model for autonomous 3D reconstruction from a single indoor image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2418–2428. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  5. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  6. Fitzpatrick, P.: First contact: an active vision approach to segmentation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3 (2003)

    Google Scholar 

  7. Forsyth, D.A., Ponce, J.: Computer Vision – A Modern Approach. Prentice Hall (2002)

    Google Scholar 

  8. Goh, A., Vidal, R.: Segmenting motions of different types by unsupervised manifold clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518

    Google Scholar 

  10. Katz, D., Brock, O.: Manipulating articulated objects with interactive perception. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, USA (2008)

    Google Scholar 

  11. Katz, D., Brock, O.: A factorization approach to manipulation in unstructured environments. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 285–300. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Katz, D., Brock, O.: Interactive segmentation of articulated objects in 3D (under review). In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (May 2011)

    Google Scholar 

  13. Katz, D., Pyuro, Y., Brock, O.: Learning to manipulate articulated objects in unstructured environments using a grounded relational representation. In: Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland, pp. 254–261 (June 2008)

    Google Scholar 

  14. Kenney, J., Buckley, T., Brock, O.: Interactive segmentation for manipulation in unstructured environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, pp. 1343–1348. IEEE Press (2009)

    Google Scholar 

  15. Lourakis, M.A., Argyros, A.: SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009)

    Article  MathSciNet  Google Scholar 

  16. Maki, A., Watanabe, M., Wiles, C.: Geotensity: Combining motion and lighting for 3D surface reconstruction. International Journal of Computer Vision 48(2), 75–90 (2002)

    Article  MATH  Google Scholar 

  17. Malik, J., Rosenholtz, R.: Computing local surface orientation and shape from texture for curved surfaces (1997)

    Google Scholar 

  18. Matula, D.W.: Determining edge connectivity in O(mn). In: Proceedings of the 28th Symp. on Foundations of Computer Science, pp. 249–251 (1987)

    Google Scholar 

  19. Montiel, J., Civera, J., Davison, A.: Unified Inverse Depth Parametrization for Monocular SLAM. In: Proceedings of Robotics: Science and Systems, RSS (August 2006); This is a prestigious new single-track international robotics conference with online-only proceedings

    Google Scholar 

  20. Nagai, T., Naruse, T., Ikehara, M., Kurematsu, A.: HMM-based surface reconstruction from single images. In: International Conference on Image Processing, vol. 2, pp. II-561–II-564 (2002)

    Google Scholar 

  21. Ross, D.A., Tarlow, D., Zemel, R.S.: Unsupervised Learning of Skeletons from Motion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 560–573. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. International Journal of Computer Vision 76(1), 53–69 (2008)

    Article  Google Scholar 

  23. Sturm, J., Konolige, K., Stachniss, C., Burgard, W.: Vision-based detection for learning articulation models of cabinet doors and drawers in household environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska (2010)

    Google Scholar 

  24. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)

    Google Scholar 

  25. Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajectories of articulated objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Katz, D., Orthey, A., Brock, O. (2014). Interactive Perception of Articulated Objects. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics