Skip to main content

Examining Protein Folding Process Simulation and Searching for Common Structure Motifs in a Protein Family as Experiments in the GridSpace2 Virtual Laboratory

  • Chapter
Building a National Distributed e-Infrastructure–PL-Grid

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7136))

Abstract

This paper presents two in-silico experiments from the field of bioinformatics. The first experiment covers the popular problem of protein folding process simulation and investigates the correctness of the “Fuzzy Oil Drop” model (FOD) [3], on over 60 thousands of proteins deposited in Protein Data Bank [18]. The FOD model assumes the hydrophobicity distribution in proteins to be accordant with the 3D Gauss function differentiating the hydrophobicity density from the highest in the center of the molecule, to zero level on the surface. The second experiment focuses on performing comparison of proteins that belong to the same family. Examination of proteins alignment at three different levels of protein description may lead to identifying a conservative area in protein family, which is responsible for the protein function. It also creates a possibility of determining a ligand binding site for protein, which is a key issue in drug design. Both experiments were realized as virtual experiments in the GridSpace2 Virtual Laboratory [13] Experiment Workbench [16] and were executed on Zeus cluster provided by PL-Grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxevanis, A.D., Ouellette, F.B.F.; Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience (2001) ISBN (0471383910)

    Google Scholar 

  2. Higgs, P.G., Attwood, T.: Bioinformatics and Molecular Evolution. Blackwell Publishing Limited (2005) ISBN (1405106832)

    Google Scholar 

  3. Konieczny, L., Brylinski, M., Roterman, I.: Gauss-function-based model of hydrophobicity density in proteins. Silico. Biol. 6, 15–22 (2006)

    Google Scholar 

  4. Brylinski, M., Konieczny, L., Kononowicz, A., Roterman, I.: Conservative secondary structure motifs already present in early-stage folding (in silico) as found in serpines family. Journal of Theoretical Biology 251, 275–285 (2008)

    Article  MathSciNet  Google Scholar 

  5. Brylinski, M., Konieczny, L., Roterman, I.: SPI – structure predictability index for protein sequences. Silico. Biol. 5, 22 (2004)

    Google Scholar 

  6. Jurkowski, W., Brylinski, M., Konieczny, L., Wisniowski, Z., Roterman, I.: Conformational subspace in simulation of early-stage protein folding. Proteins 55(91), 115–127 (2004)

    Article  Google Scholar 

  7. Roterman, I.: The geometrical analysis of peptide backbone structure and its local deformations. Biochimie. 77(3), 204–216 (1995)

    Article  Google Scholar 

  8. Roterman, I.: Modelling the optimal simulation path in the peptide chain folding – studies based on geometry of alanine heptapeptide. J. Theor. Biol. 177(3), 283–288 (1995)

    Article  Google Scholar 

  9. Kauzmann, W.: Adv. Protein Chem. 14, 1 (1959)

    Google Scholar 

  10. Levitt, M.: A Simplified Representation of Protein Conformations for Rapid Simulation of Protein Folding. J. Mol. Biol. 104, 59–107 (1976)

    Article  Google Scholar 

  11. Nalewajski, R.F.: Information theory of molecular systems. Elsevier (2006) ISBN 978-0-444-51966-5

    Google Scholar 

  12. Chou, K.C.: Review: structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry 11, 2105–2134 (2004)

    Article  Google Scholar 

  13. Ciepiela, E., Harężlak, D., Kocot, J., Bartyński, T., Kasztelnik, M., Nowakowski, P., Gubała, T., Malawski, M., Bubak, M.: Exploratory Programming in the Virtual Laboratory. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 621–628 (2010)

    Google Scholar 

  14. Ciepiela, E., Nowakowski, P., Kocot, J., Harężlak, D., Gubała, T., Meizner, J., Kasztelnik, M., Bartyński, T., Malawski, M., Bubak, M.: Managing Entire Lifecycles of e-Science Applications in the GridSpace2 Virtual Laboratory – from Motivation through Idea to Operable Web-Accessible Environment Built on Top of PL-Grid e-Infrastructure. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 228–239. Springer, Heidelberg (2012)

    Google Scholar 

  15. Ciepiela, E., Zaraska, L., Sulka, G.D.: GridSpace2 Virtual Laboratory Case Study: Implementation of Algorithms of Quantitative Analysis of the Grain Morphology in Self-Assembled Hexagonal Lattices according to Hillebrand Method. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 240–251. Springer, Heidelberg (2012)

    Google Scholar 

  16. GridSpace2 Experiment Workbench – portal for PL-Grid users, https://gs2.plgrid.pl

  17. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34(Web Server issue), 729–732 (2006)

    Article  Google Scholar 

  18. Research Collaboratory for Structural Bioinformatics, Protein Data Bank, http://www.rcsb.org/

  19. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., Mcwilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. Bioinformatics 23(21) (2007)

    Google Scholar 

  20. Ortiz, A.R., Strauss, C.E., Olmea, O.: MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Science: A Publication of the Protein Society 11, 2606–2621 (2002)

    Article  Google Scholar 

  21. Ruby programming language, http://www.ruby-lang.org

  22. Python programming language, http://www.python.org

  23. Biopython – a set of freely available tools for biological computation, http://biopython.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marian Bubak Tomasz Szepieniec Kazimierz Wiatr

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jadczyk, T., Malawski, M., Bubak, M., Roterman, I. (2012). Examining Protein Folding Process Simulation and Searching for Common Structure Motifs in a Protein Family as Experiments in the GridSpace2 Virtual Laboratory. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds) Building a National Distributed e-Infrastructure–PL-Grid. Lecture Notes in Computer Science, vol 7136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28267-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28267-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28266-9

  • Online ISBN: 978-3-642-28267-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics