Advertisement

Managing Entire Lifecycles of e-Science Applications in the GridSpace2 Virtual Laboratory – From Motivation through Idea to Operable Web-Accessible Environment Built on Top of PL-Grid e-Infrastructure

  • Eryk Ciepiela
  • Piotr Nowakowski
  • Joanna Kocot
  • Daniel Harężlak
  • Tomasz Gubała
  • Jan Meizner
  • Marek Kasztelnik
  • Tomasz Bartyński
  • Maciej Malawski
  • Marian Bubak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7136)

Abstract

The GridSpace2 environment, developed in the scope of the PL-Grid Polish National Grid Initiative, constitutes a comprehensive platform which supports e-science applications throughout their entire lifecycle. Application development may involve multiple phases, including writing, prototyping, testing and composing the application. Once the application attains maturity it becomes operable and capable of being executed, although it may still be subject to further development – including actions such as sharing with collaborating researchers or making results publicly available with the use of dedicated publishing interfaces. This paper describes each of these phases in detail, showing how the GridSpace2 platform can assist the developers and publishers of computational experiments.

Keywords

virtual laboratories computational science application development collaborative research 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    List of scientific publications associated with GridSpace, http://dice.cyfronet.pl/publications/
  2. 2.
    Ciepiela, E., Harężlak, D., Kocot, J., Bartyński, T., Kasztelnik, M., Nowakowski, P., Gubała, T., Malawski, M., Bubak, M.: Exploratory Programming in the Virtual Laboratory. In: Proceedings of the International Multiconference on Computer Science and Information Technology, Wisla, Poland, pp. 621–628 (2010)Google Scholar
  3. 3.
    GridSpace2 technology homepage, http://dice.cyfronet.pl/gridspace
  4. 4.
    The PL-Grid project, http://www.plgrid.pl/en
  5. 5.
    The Mapper project, http://mapper-project.eu
  6. 6.
    Triana homepage, http://www.trianacode.org
  7. 7.
    Kepler project homepage, http://kepler-project.org
  8. 8.
  9. 9.
    Gunarathne, T., Herath, C., Chinthaka, E., Marru, S.: Experience with Adapting a WS-BPEL Runtime for e-Science Workflows. In: Proceedings of the 5th Grid Computing Environments Workshop, pp. 1–10. ACM (2009)Google Scholar
  10. 10.
    The ViroLab Project, http://virolab.cyfronet.pl
  11. 11.
    Rycerz, K., Bubak, M., Sloot, P.M.A., Getov, V.: Problem-Solving Environment for Distributed Interactive Simulations. In: Gorlatch, S., Bubak, M., Priol, T. (eds.) Achievements in European Research on Grid Systems, CoreGRID Integration Workshop 2006 (Selected Papers), pp. 55–66. Springer, Heidelberg (2008) ISBN-13: 978-0-387-72811-7Google Scholar
  12. 12.
    Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M., Moreau, L., Myers, J.: Examining the Challenges of Scientific Workflows. IEEE Computer 40(12), 24–32 (2007)CrossRefGoogle Scholar
  13. 13.
    Allen, G., Löffler, F., Radke, T., Schnetter, E., Seidel, E.: Integrating Web 2.0 Technologies with Scientific Simulation Codes for Real-time Collaboration. Cluster, 1–10 (2009)Google Scholar
  14. 14.
    Droegemeier, K.K., et al.: Service-oriented Environments in Research and Education for Dynamically Interacting with Mesoscale Weather. IEEE Computing in Science and Engineering (2005)Google Scholar
  15. 15.
    Stevens, R., et al.: Exploring Williams-Beuren Syndrome using MyGrid. Bioinformatics 1(20), 303–310 (2004)CrossRefGoogle Scholar
  16. 16.
    The myExperiment, http://myexperiment.org
  17. 17.
    Altintas, I., Jaeger, E., Lin, K., Ludaescher, B., Memon, A.: A Web Service Composition and Deployment Framework for Scientific Workflows. In: ICWS, p. 814 (2004)Google Scholar
  18. 18.
    The Elsevier Executable Paper Grand Challenge, http://www.executablepapers.com
  19. 19.
    The SCiX project, http://www.scix.net
  20. 20.
    The PEER project, http://www.peerproject.eu
  21. 21.
    The LiquidPub project, http://liquidpub.org
  22. 22.
    The Concept Web Alliance homepage, http://conceptweblog.wordpress.com/declaration
  23. 23.
    Attwood, T.K., Kell, D.B., McDermott, P., Marsh, J., Pettifer, S.R., Thorne, D.: Utopia Documents: Linking Scholarly Literature with Research Data. In: Proceedings of 9th European Conference on Computational Biology, Ghent, Belgium (September 2010)Google Scholar
  24. 24.
    The Worldwide Protein Data Bank homepage, http://www.wwpdb.org
  25. 25.
    Gubała, T., Prymula, K., Nowakowski, P., Bubak, M.: Semantic Integration for Model-based Life Science Applications. Paper submitted to IEEE Internet Computing; evaluation pendingGoogle Scholar
  26. 26.
    Jadczyk, T., Bubak, M., Roterman, I.: Is the “Fuzzy Oil Drop” Model of General Character? Poster presentation at KUKDM in Zakopane, Poland (2011)Google Scholar
  27. 27.
    Ciepiela, E., Zaraska, L., Sulka, G.D.: Implementation of Algorithms of Quantitative Analysis of the Grain Morphology in Self-Assembled Hexagonal Lattices According to Hillebrand Method, GridSpace2/Collage executable paper http://collage.cyfronet.pl/hillebrand-grains/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eryk Ciepiela
    • 1
  • Piotr Nowakowski
    • 1
  • Joanna Kocot
    • 1
  • Daniel Harężlak
    • 1
  • Tomasz Gubała
    • 1
    • 3
  • Jan Meizner
    • 1
  • Marek Kasztelnik
    • 1
  • Tomasz Bartyński
    • 1
  • Maciej Malawski
    • 2
  • Marian Bubak
    • 2
    • 3
  1. 1.ACC Cyfronet AGHAGH University of Science and TechnologyKrakówPoland
  2. 2.Institute of Computer Science AGHAGH University of Science and TechnologyKrakówPoland
  3. 3.Informatics InstituteUniversity of AmsterdamThe Netherlands

Personalised recommendations