Skip to main content

Microenvironments Dictating Tumor Cell Dormancy

  • Chapter
  • First Online:
Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 195))

Abstract

The mechanisms driving dormancy of disseminated tumor cells (DTCs) remain largely unknown. Here, we discuss experimental evidence and theoretical frameworks that support three potential scenarios contributing to tumor cell dormancy. The first scenario proposes that DTCs from invasive cancers activate stress signals in response to the dissemination process and/or a growth suppressive target organ microenvironment inducing dormancy. The second scenario asks whether therapy and/or micro-environmental stress conditions (e.g. hypoxia) acting on primary tumor cells carrying specific gene signatures prime new DTCs to enter dormancy in a matching target organ microenvironment that can also control the timing of DTC dormancy. The third and final scenario proposes that early dissemination contributes a population of DTCs that are unfit for immediate expansion and survive mostly in an arrested state well after primary tumor surgery, until genetic and/or epigenetic mechanisms activate their proliferation. We propose that DTC dormancy is ultimately a survival strategy that when targeted will eradicate dormant DTCs preventing metastasis. For these non-mutually exclusive scenarios we review experimental and clinical evidence in their support.

Paloma Bragado and Maria Soledad Sosa contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  PubMed  CAS  Google Scholar 

  2. Klein CA (2010) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49

    Google Scholar 

  3. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100

    Article  PubMed  CAS  Google Scholar 

  4. Almog N et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69:836–844

    Article  PubMed  CAS  Google Scholar 

  5. Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115:325–336

    Article  PubMed  CAS  Google Scholar 

  6. Muraoka-Cook RS et al (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011

    Article  PubMed  CAS  Google Scholar 

  7. Kang Y et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  8. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  PubMed  CAS  Google Scholar 

  10. Hickson JA et al (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270

    Article  PubMed  CAS  Google Scholar 

  11. Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27:67–73

    Article  PubMed  Google Scholar 

  12. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104

    Article  PubMed  CAS  Google Scholar 

  13. Barkan D et al (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70:5706–5716

    Article  PubMed  CAS  Google Scholar 

  14. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–56

    Article  PubMed  Google Scholar 

  15. Adam AP et al (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672

    Article  PubMed  CAS  Google Scholar 

  16. Ranganathan AC, Ojha S, Kourtidis A, Conklin DS, Aguirre-Ghiso JA (2008) Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res 68:3260–3268

    Article  PubMed  CAS  Google Scholar 

  17. Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66:1702–1711

    Article  PubMed  CAS  Google Scholar 

  18. Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5(7):729–735

    Google Scholar 

  19. Taghavi P et al (2008) In vitro genetic screen identifies a cooperative role for LPA signaling and c-Myc in cell transformation. Oncogene 27:6806–6816

    Article  PubMed  CAS  Google Scholar 

  20. Harrison LB, Sessions RB, Ki-Hong W (2003) Head and neck cancer. A multidisciplinary approach, Wolters Kluwer-Lippincott Williams & Wilkins, Philadelphia, p 960

    Google Scholar 

  21. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  PubMed  CAS  Google Scholar 

  22. Gath HJ, Brakenhoff RH (1999) Minimal residual disease in head and neck cancer. Cancer Metastasis Rev 18:109–126

    Article  PubMed  CAS  Google Scholar 

  23. Wikman H, Vessella R, Pantel K (2008) Cancer micrometastasis and tumour dormancy. Apmis 116:754–770

    Article  PubMed  CAS  Google Scholar 

  24. Klein CA (2008) The direct molecular analysis of metastatic precursor cells in breast cancer: a chance for a better understanding of metastasis and for personalised medicine. Eur J Cancer 44(18):2721–2725

    Article  PubMed  CAS  Google Scholar 

  25. Husemann Y et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68

    Article  PubMed  Google Scholar 

  26. Ossowski L, Russo H, Gartner M, Wilson EL (1987) Growth of a human carcinoma (HEp3) in nude mice: rapid and efficient metastasis. J Cell Physiol 133:288–296

    Article  PubMed  CAS  Google Scholar 

  27. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345

    Article  PubMed  CAS  Google Scholar 

  28. Fan X et al (2002) Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. J Immunol 168:755–762

    PubMed  CAS  Google Scholar 

  29. Fortunel N et al (2000) Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-beta type II receptor in a short-term in vitro assay. Stem Cells 18:102–111

    Article  PubMed  CAS  Google Scholar 

  30. Scandura JM, Boccuni P, Massague J, Nimer SD (2004) Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci U S A 101:15231–15236

    Article  PubMed  CAS  Google Scholar 

  31. Yamazaki S et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256

    Article  PubMed  CAS  Google Scholar 

  32. Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3:531–536

    Article  PubMed  CAS  Google Scholar 

  33. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  PubMed  CAS  Google Scholar 

  34. Hideshima T, Podar K, Chauhan D, Anderson KC (2005) Cytokines and signal transduction. Best Pract Res Clin Haematol 18:509–524

    Article  PubMed  CAS  Google Scholar 

  35. Adorno M et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98

    Article  PubMed  CAS  Google Scholar 

  36. Javelaud D, Alexaki VI, Mauviel A (2008) Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res 21:123–132

    Article  PubMed  CAS  Google Scholar 

  37. Hussein MR (2005) Transforming growth factor-beta and malignant melanoma: molecular mechanisms. J Cutan Pathol 32:389–395

    Article  PubMed  Google Scholar 

  38. Hsu MY, Rovinsky S, Penmatcha S, Herlyn M, Muirhead D (2005) Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev 24:251–263

    Article  PubMed  CAS  Google Scholar 

  39. Reed JA et al (2001) Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res 61:8074–8078

    PubMed  CAS  Google Scholar 

  40. Schardt JA et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8:227–239

    Article  PubMed  CAS  Google Scholar 

  41. Zapas JL et al (2003) The risk of regional lymph node metastases in patients with melanoma less than 1.0 mm thick: recommendations for sentinel lymph node biopsy. J Am Coll Surg 197:403–407

    Article  PubMed  Google Scholar 

  42. Gamel JW, George SL, Edwards MJ, Seigler HF (2002) The long-term clinical course of patients with cutaneous melanoma. Cancer 95:1286–1293

    Article  PubMed  Google Scholar 

  43. Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T (2000) Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology 107:1443–1449

    Article  PubMed  CAS  Google Scholar 

  44. Villanueva A et al (2010) New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Cancer Res 16:4688–4694

    Google Scholar 

  45. Wang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  46. Troester MA et al (2009) Activation of host wound responses in breast cancer microenvironment. Clin Cancer Res 15:7020–7028

    Article  PubMed  CAS  Google Scholar 

  47. Budhu A et al (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10:99–111

    Article  PubMed  CAS  Google Scholar 

  48. Holzel D, Eckel R, Emeny RT, Engel J (2010) Distant metastases do not metastasize. Cancer Metastasis Rev 29:737–750

    Google Scholar 

  49. Pawitan Y et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964

    Article  PubMed  CAS  Google Scholar 

  50. Kim MY et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    Article  PubMed  Google Scholar 

  51. Aguirre-Ghiso JA (2010) On the theory of tumor self-seeding: implications for metastasis progression in humans. Breast Cancer Res 12:304

    Article  PubMed  Google Scholar 

  52. McAllister SS et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    Article  PubMed  CAS  Google Scholar 

  53. Braun S et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  54. Braun S et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  PubMed  CAS  Google Scholar 

  55. Offner S et al (1999) p53 gene mutations are not required for early dissemination of cancer cells. Proc Natl Acad Sci U S A 96:6942–6946

    Article  PubMed  CAS  Google Scholar 

  56. Beausejour CM et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo J 22:4212–4222

    Article  PubMed  CAS  Google Scholar 

  57. Kouros-Mehr H et al (2008) GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13:141–152

    Article  PubMed  CAS  Google Scholar 

  58. Maneechotesuwan K et al (2009) Suppression of GATA-3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease. PLoS Med 6:e1000076

    Article  PubMed  Google Scholar 

  59. Maneechotesuwan K et al (2007) Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J Immunol 178:2491–2498

    PubMed  CAS  Google Scholar 

  60. Wen H-C et al (2011) p38alpha Signaling induces anoikis and lumen formation during mammary morphogenesis. Sci Signal 4:ra34

    Google Scholar 

  61. Stott SL et al (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2:25ra23

    Google Scholar 

  62. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184:702–712

    Article  PubMed  CAS  Google Scholar 

  63. Wyckoff J et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    Article  PubMed  CAS  Google Scholar 

  64. Qian B et al (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Samuel Waxman Cancer Research Foundation Tumor Dormancy Program, NIH/National Cancer Institute (CA109182), NIEHS (ES017146) and NYSTEM to J.A.A-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Aguirre-Ghiso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bragado, P., Sosa, M.S., Keely, P., Condeelis, J., Aguirre-Ghiso, J.A. (2012). Microenvironments Dictating Tumor Cell Dormancy. In: Ignatiadis, M., Sotiriou, C., Pantel, K. (eds) Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer. Recent Results in Cancer Research, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28160-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28160-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28159-4

  • Online ISBN: 978-3-642-28160-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics