Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 347 Accesses

Abstract

The search for insight into the microscopic details of chemical reactions is the central theme of all chemical dynamics investigations. With this goal in mind, experimental studies of gas/surface reaction dynamics have evolved with increasingly refined measurements and models. Understanding of gas/surface reactivity is imperative because of the critical role that these reactions play in many industrial processes such as hydrogen production, heterogeneous catalysis for chemical synthesis or chemical vapor deposition of thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.S. Bengaard et al., Steam reforming and graphite formation on Ni catalysts. J. Catal. 209(2), 365–384 (2002)

    Article  CAS  Google Scholar 

  2. R.D. Beck et al., Vibrational mode-specific reaction of methane on a nickel surface. Science 302(5642), 98–100 (2003)

    Article  CAS  Google Scholar 

  3. D.R. Killelea et al., Bond-selective control of a heterogeneously catalyzed reaction. Science 319(5864), 790–793 (2008)

    Article  CAS  Google Scholar 

  4. V.A. Ukraintsev, I. Harrison, A statistical-model for activated dissociative adsorption—application to methane dissociation on Pt(111). J. Chem. Phys. 101(2), 1564–1581 (1994)

    Article  CAS  Google Scholar 

  5. A. Bukoski, D. Blumling, I. Harrison, Microcanonical unimolecular rate theory at surfaces. I. Dissociative chemisorption of methane on Pt(111). J. Chem. Phys. 118(2), 843–871 (2003)

    Article  CAS  Google Scholar 

  6. H.L. Abbott, A. Bukoski, I. Harrison, Microcanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100). J. Chem. Phys. 121(8), 3792–3810 (2004)

    Article  CAS  Google Scholar 

  7. L.B.F. Juurlink, D.R. Killelea, A.L. Utz, State-resolved probes of methane dissociation dynamics. Prog. Surf. Sci. 84(3–4), 69–134 (2009)

    Article  CAS  Google Scholar 

  8. P. Maroni, (2005) Bond- and mode-specific reactivity of methane on Ni(100). Ecole Polytechnique Fédérale de Lausanne Thesis No. 3335

    Google Scholar 

  9. J.C. Polanyi, Some concepts in reaction dynamics. Acc. Chem. Res. 5(5), 161 (1972)

    Article  CAS  Google Scholar 

  10. J.C. Polanyi, Some concepts in reaction dynamics. Science 236(4802), 680–690 (1987)

    Article  CAS  Google Scholar 

  11. K.M. DeWitt et al., Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111). J. Phys. Chem. B 110(13), 6705–6713 (2006)

    Article  CAS  Google Scholar 

  12. M. Born, R. Oppenheimer, Quantum theory of molecules. Annalen Der Physik 84(20), 0457–0484 (1927)

    Article  CAS  Google Scholar 

  13. J.D. White et al., Conversion of large-amplitude vibration to electron excitation at a metal surface. Nature 433(7025), 503–505 (2005)

    Article  CAS  Google Scholar 

  14. A.M. Wodtke, D. Matsiev, D.J. Auerbach, Energy transfer and chemical dynamics at solid surfaces: The special role of charge transfer. Prog. Surf. Sci. 83(3), 167–214 (2008)

    Article  CAS  Google Scholar 

  15. N. Shenvi, S. Roy, J.C. Tully, Dynamical steering and electronic excitation in NO Scattering from a gold surface. Science 326(5954), 829–832 (2009)

    Article  CAS  Google Scholar 

  16. M.N. Carre, B. Jackson, Dissociative chemisorption of CH4 on Ni: The role of molecular orientation. J. Chem. Phys. 108(9), 3722–3730 (1998)

    Article  CAS  Google Scholar 

  17. L. Hanley, Z. Xu, J.T. Yates, Methane activation on Ni(111) at high-pressures. Surf. Sci. 248(3), L265–L273 (1991)

    Article  CAS  Google Scholar 

  18. B.O. Nielsen et al., Activated dissociative chemisorption of methane on Ni(100)—a direct mechanism under thermal conditions. Catal. Lett. 32(1–2), 15–30 (1995)

    Article  CAS  Google Scholar 

  19. J.H. Larsen, I. Chorkendorff, From fundamental studies of reactivity on single crystals to the design of catalysts. Surf. Sci. Rep. 35(5–8), 165–222 (1999)

    Google Scholar 

  20. M. Balooch et al., Molecular-beam study of apparent activation barrier associated with adsorption and desorption of hydrogen on copper. Surf. Sci. 46(2), 358–392 (1974)

    Article  CAS  Google Scholar 

  21. C.T. Rettner, H.E. Pfnur, D.J. Auerbach, Dissociative chemisorption of CH4 on W(110—dramatic activation by initial kinetic-energy. Phys. Rev. Lett. 54(25), 2716–2719 (1985)

    Article  CAS  Google Scholar 

  22. C.T. Rettner, H.E. Pfnur, D.J. Auerbach, On the role of vibrational-energy in the activated dissociative chemisorption of methane on tungsten and rhodium. J. Chem. Phys. 84(8), 4163–4167 (1986)

    Article  CAS  Google Scholar 

  23. A.C. Luntz, CH4 dissociation on Ni(100)—comparison of a direct dynamical model to molecular-beam experiments. J. Chem. Phys. 102(20), 8264–8269 (1995)

    Article  CAS  Google Scholar 

  24. J.J. Repetski, R.E. Mates, Rotational temperature in an underexpanded jet. Phys. Fluids 14(12), 2605 (1971)

    Article  Google Scholar 

  25. L.B.F. Juurlink et al., Eigenstate-resolved studies of gas-surface reactivity: CH4 (nu(3)) dissociation on Ni(100). Phys. Rev. Lett. 83(4), 868–871 (1999)

    Article  CAS  Google Scholar 

  26. J. Higgins et al., State selective vibrational (2 nu(3)) activation of the chemisorption of methane on Pt (111). J. Chem. Phys. 114(12), 5277–5283 (2001)

    Article  CAS  Google Scholar 

  27. M.P. Schmid et al., Molecular-beam/surface-science apparatus for state-resolved chemisorption studies using pulsed-laser preparation. Rev. Sci. Instrum. 74(9), 4110–4120 (2003)

    Article  CAS  Google Scholar 

  28. L.B.F. Juurlink, R.R. Smith, A.L. Utz, The role of rotational excitation in the activated dissociative chemisorption of vibrationally excited methane on Ni(100). in General discussion on excited states at surfaces (Nottingham, England, Royal Soc Chemistry, 2000)

    Google Scholar 

  29. R. Bisson et al., State-resolved reactivity of CH4(2 nu(3)) on Pt(111) and Ni(111): Effects of barrier height and transition state location. J. Phys. Chem. A 111(49), 12679–12683 (2007)

    Article  CAS  Google Scholar 

  30. P. Maroni et al., State-resolved gas-surface reactivity of methane in the symmetric C–H stretch vibration on Ni(100). Phys. Rev. Lett. 94(24), 4 (2005)

    Article  Google Scholar 

  31. R.R. Smith et al., Preference for vibrational over translational energy in a gas-surface reaction. Science 304(5673), 992–995 (2004)

    Article  CAS  Google Scholar 

  32. R. Bisson, M. Sacchi, R.D. Beck, State-resolved reactivity of CH4 on Pt(110)-(1x2): The role of surface orientation and impact site. J. Chem. Phys. 132(9),   (2010)

    Article  Google Scholar 

  33. D.R. Killelea et al., Surface temperature dependence of methane activation on Ni(111). J. Phys. Chem. C 113(48), 20618–20622 (2009)

    Article  CAS  Google Scholar 

  34. M.P. Schmid et al., Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4 (2 nu(3)) on Ni(100). J. Chem. Phys. 117(19), 8603–8606 (2002)

    Article  CAS  Google Scholar 

  35. L. Halonen, S.L. Bernasek, D.J. Nesbitt, Reactivity of vibrationally excited methane on nickel surfaces. J. Chem. Phys. 115(12), 5611–5619 (2001)

    Article  CAS  Google Scholar 

  36. L. Halonen, M.S. Child, Local mode theory for C3 V molecules—CH3D, CHD3, SiH3D, and SiHD3. J. Chem. Phys. 79(9), 4355–4362 (1983)

    Article  CAS  Google Scholar 

  37. F.F. Crim, State-selected and bond-selected unimolecular reactions. Science 249(4975), 1387–1392 (1990)

    Article  CAS  Google Scholar 

  38. A. Sinha, M.C. Hsiao, F.F. Crim, Bond-selected bimolecular chemistry—H+HOD(4nu-OH)-O+H2. J. Chem. Phys. 92(10), 6333–6335 (1990)

    Article  CAS  Google Scholar 

  39. F.F. Crim, Bond-selected chemistry: Vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100(31), 12725–12734 (1996)

    Article  CAS  Google Scholar 

  40. M.J. Bronikowski et al., Bond-specific chemistry—OD:OH product ratios for the reactions H+HOD(100) and H+HOD(001). J. Chem. Phys. 95(11), 8647–8648 (1991)

    Article  CAS  Google Scholar 

  41. Z.H. Kim, H.A. Bechtel, R.N. Zare, Vibrational control in the reaction of methane with atomic chlorine. J. Am. Chem. Soc. 123(50), 12714–12715 (2001)

    Article  CAS  Google Scholar 

  42. L.B.F. Juurlink et al., Comparative Study of C–H Stretch and Bend Vibrations in Methane Activation on Ni(100) and Ni(111). Phys. Rev. Lett. 94(20), 208303 (2005)

    Article  CAS  Google Scholar 

  43. K.H. Kramer, R. Bernstein, Focusing and orientation of symmetric-top molecules with electric 6-pole field. J. Chem. Phys. 42(2), 767 (1965)

    Article  CAS  Google Scholar 

  44. A.W. Kleyn et al., Steric effects in scattering and adsorption on NO at Ag(111). J. Chem. Soc.-Faraday Trans. Ii 85, 1337–1345 (1989)

    Article  CAS  Google Scholar 

  45. E.W. Kuipers et al., Steric effects in molecular adsorption due to an anisotropic repulsion. Surf. Sci. 211(1–3), 819–828 (1989)

    Article  Google Scholar 

  46. S.I. Ionov et al., Surface-temperature dependence of the steric effect in the scattering of oriented tert-butyl chloride and fluoroform molecules by graphite(0001). J. Chem. Phys. 93(10), 7406–7415 (1990)

    Article  CAS  Google Scholar 

  47. A.J. Komrowski et al., Dissociative adsorption of NO upon Al(111): Orientation dependent charge transfer and chemisorption reaction dynamics. J. Chem. Phys. 117(18), 8185–8189 (2002)

    Article  CAS  Google Scholar 

  48. M. Brandt et al., The role of molecular state and orientation in harpooning reactions: N2O on Cs/Pt(111). Phys. Rev. Lett. 81(11), 2376–2379 (1998)

    Article  CAS  Google Scholar 

  49. J.N. Greeley et al., Scattering aligned NO + on Ag(111)—the effect of internuclear-axis direction on NO- and O- product formation. J. Chem. Phys. 102(12), 4996–5011 (1995)

    Article  CAS  Google Scholar 

  50. L. Vattuone et al., Stereodynamic effects in the adsorption of ethylene onto a metal surface. Angew. Chem. Int. Ed. 43, 5200–5203 (2004)

    Article  CAS  Google Scholar 

  51. A. Gerbi et al., Stereodynamic effects in the adsorption of propylene molecules on Ag(001). J. Phys. Chem. B 109(48), 22884–22889 (2005)

    Article  CAS  Google Scholar 

  52. A. Gerbi et al., New insights on the stereodynamics of ethylene adsorption on an oxygen-precovered silver surface. J. Chem. Phys. 123(22),   (2005)

    Article  Google Scholar 

  53. A. Gerbi et al., Role of Rotational Alignment in Dissociative Chemisorption and Oxidation: O2 on Bare and CO-Precovered Pd(100)13. Angew. Chem. Int. Ed. 45(40), 6655–6658 (2006)

    Article  CAS  Google Scholar 

  54. L. Vattuone et al., Selective production of reactive and nonreactive oxygen atoms on Pd(001) by rotationally aligned oxygen molecules. Angew. Chem. Int. Ed. 48(26), 4845–4848 (2009)

    Article  CAS  Google Scholar 

  55. H. Hou et al., The stereodynamics of a gas-surface reaction. Science 277(5322), 80–82 (1997)

    Article  CAS  Google Scholar 

  56. W.A. Dino, H. Kasai, A. Okiji, Role of rotational motion in the dissociative adsorption and associative desorption dynamics of D-2/Cu(111). Phys. Rev. Lett. 78(2), 286–289 (1997)

    Article  CAS  Google Scholar 

  57. U. Fano, J.H. Macek, Impact excitation and polarization of emitted light. Rev. Mod. Phys. 45(4), 553–573 (1973)

    Article  CAS  Google Scholar 

  58. C.H. Greene, R.N. Zare, Photofragment alignment and orientation. Annu. Rev. Phys. Chem. 33, 119–150 (1982)

    Article  CAS  Google Scholar 

  59. W.R. Simpson, A.J. Orrewing, R.N. Zare, State-to-state differential cross-sections for the reaction Cl((2)P(3/2)) + CH4(nu-3 = 1, J = 1)-]HCL(nu′ = 1, J′) + CH3. Chem. Phys. Lett. 212(1–2), 163–171 (1993)

    Article  CAS  Google Scholar 

  60. W.R. Simpson et al., Reaction of Cl with vibrationally excited CH4 and CHD3—state-to-state differential cross-sections and steric effects for the HCl product. J. Chem. Phys. 103(17), 7313–7335 (1995)

    Article  CAS  Google Scholar 

  61. W.R. Simpson et al., Picturing the transition-state region and understanding vibrational enhancement for the Cl + CH4- → HCl + CH3 reaction. J. Phys. Chem. 100(19), 7938–7947 (1996)

    Article  CAS  Google Scholar 

  62. A.J. OrrEwing et al., Scattering-angle resolved product rotational alignment for the reaction of Cl with vibrationally excited methane. J. Chem. Phys. 106(14), 5961–5971 (1997)

    Article  CAS  Google Scholar 

  63. W.R. Simpson et al., Core extraction for measuring state-to-state differential-cross section of bimolecular reactions. J. Chem. Phys. 103(17), 7299–7312 (1995)

    Article  CAS  Google Scholar 

  64. A.J. Alexander, R.N. Zare, Anatomy of elementary chemical reactions. J. Chem. Edu. 75(9), 1105–1118 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. Yoder .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoder, B.L. (2012). Introduction. In: Steric Effects in the Chemisorption of Vibrationally Excited Methane on Nickel. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27679-8_1

Download citation

Publish with us

Policies and ethics