Skip to main content

Parallel-Populations Genetic Algorithm for the Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7101))

Included in the following conference series:

Abstract

In this paper a parallel-populations genetic algorithm procedure is presented for the obtainment of minimum-time trajectories for industrial robots. This algorithm is fed in first place by a sequence of configurations then cubic spline functions are used for the construction of joint trajectories for industrial robots. The algorithm is subjected to two types of constraints: (1) Physical constraints on joint velocities, accelerations, and jerk. (2) Dynamic constraints on torque, power, and energy. Comparison examples are used to evaluate the method with different combinations of crossover and mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saramago, S.F.P., Steffen Jr., V.: Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system. Mechanism and Machine Theory 33(7), 883–894 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Saramago, S.F.P., Steffen Jr., V.: Dynamic optimization for the trajectory planning of robot manipulators in the presence of obstacles. J. Brazilian Soc. Mech. Sci. 21(3), 1–17 (1999)

    Google Scholar 

  3. Saramago, S.F.P., Steffen Jr., V.: Optimal trajectory planning of robot manipulators in the presence of moving obstacles. Mechanism and Machine Theory 35(8), 1079–1094 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Saramago, S.F.P., Steffen Jr., V.: Trajectory modeling of robot manipulators in the presence of obstacles. J. Optim. Theory Appl. 110(1), 17–34 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Saramago, S.F.P., Ceccareli, M.: An optimum robot path planning with payload constraints. Robotica 20, 395–404 (2002)

    Article  Google Scholar 

  6. Luh, J.Y.S., Lin, C.-S.: Optimal path planning for mechanical manipulators. ASME J. DYN. Syst. Meas. Contr. 102, 142–151 (1981)

    Article  Google Scholar 

  7. Lin, C.-S., Chang, P.R., Luh, J.Y.S.: Formulation and optimization of cubic polynomial joint trajectories for industrial manipulators. IEEE Trans. Automat. Contr. AC-28(12), 1066–1074 (1983)

    Article  MATH  Google Scholar 

  8. Thompson, M., Patel, R.: Formulation of joint trajectories for industrial robots using B-splines. IEEE Trans. Indus. Electr. 34, 192–199 (1987)

    Article  Google Scholar 

  9. Gasparetto, A., Zanotto, V.: A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory 42, 455–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, C.H., Horng, J.G.: Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-Spline functions. IEEE Trans. Automat. Contr. 35(35), 573–577 (1990)

    Article  MATH  Google Scholar 

  11. Jamhour, E., André, P.J.: Planning smooth trajectories along parametric paths. Mathematics and Computers in Simulation 41, 615–626 (1996)

    Article  Google Scholar 

  12. Tse, K.-M., Wang, C.-H.: Evolutionary Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. In: IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, vol. 4, pp. 3272–3276 (1998)

    Google Scholar 

  13. Rubio, F.J., Valero, F.J., Suñer, J.L., Mata, V.: Simultaneous algorithm to solve the trajectory planning problem. Mechanism and Machine Theory 44, 1910–1922 (2009)

    Article  MATH  Google Scholar 

  14. Rubio, F.J., Valero, F.J., Suñer, J.L.: The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal 37(5), 441–451 (2010)

    Article  Google Scholar 

  15. Chettibi, T., Lehtihet, H.E., Haddad, M., Hanchi, S.: Minimum cost trajectory planning for industrial robots. European Journal of Mechanics A/Solids 23, 703–715 (2004)

    Article  MATH  Google Scholar 

  16. Aurelio, P.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Indus. Electr. 47(1), 140–149 (2000)

    Article  Google Scholar 

  17. Elnagar, A., Hussein, A.: On optimal constrained trajectory planning in 3D environments. Robot. Auton. Syst. 33(44), 195–206 (2000)

    Article  Google Scholar 

  18. Ata, A.A., Myo, R.T.: Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search. International Journal of Advanced Robotic Systems 2(3), 239–244 (2005)

    Article  Google Scholar 

  19. Saravanan, R., Ramabalan, S.: Evolutionary Minimum Cost Trajectory Planning for Industrial Robots. International Journal of Advanced Robotic Systems 52, 45–77 (2008)

    Article  Google Scholar 

  20. Saravanan, R., Ramabalan, S., Balamurugan, C., Subash, A.: Evolutionary Trajectory Planning for an Industrial Robot. International Journal of Automation and Computing 7(2), 190–198 (2010)

    Article  Google Scholar 

  21. Abu-Dakka, F.: Trajectory Planning for Industrial Robot Using Genetic Algorithms. Doctorate Thesis, Departamento Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia. Valencia, Spain (2011)

    Google Scholar 

  22. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components. MIT, Cambridge (1996), http://lancet.mit.edu/ga

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abu-Dakka, F.J., Assad, I.F., Valero, F., Mata, V. (2011). Parallel-Populations Genetic Algorithm for the Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25486-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25485-7

  • Online ISBN: 978-3-642-25486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics