Skip to main content

Humanoid Motion Planning in the Goal Reaching Movement of Anthropomorphic Upper Limb

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7101))

Included in the following conference series:

  • 4058 Accesses

Abstract

The anthropomorphic limb, such as, full size prosthetic upper limbs and exoskeleton rehabilitation robot, etc. moving human like motion during the reaching movements is important for safe and ergonomic consideration. This study is toward planning the humanoid motion of the hand of anthropomorphic limbs in the goal reaching movement with high curved trajectory. The proposed method treats the configuration of hand as element in the SE(3), and uses local coordinate chart mapping on cotangent space between group structure and manifold structure. The wrench on se*(3) which drives the hand to target configuration is derived from the force one form based on the defined conservative potential field. In order to guarantee the curvature of trajectory and bell-shaped velocity profile, the repulsive potential field is used to derive the repulsive wrench. The result trajectory and corresponding velocity profile are basically consistent with the human hand motion in the goal reaching movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badawy, A., McInnes, C.R.: Small spacecraft formation using potential functions. Acta Astronautica 65(11-12), 1783–1788 (2009)

    Article  Google Scholar 

  2. Biess, A., Flash, T., et al.: Riemannian geometric approach to human arm dynamics, movement optimization, and invariance. Physical Review E 83(3), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  3. Biess, A., Liebermann, D.G., et al.: A Computational Model for Redundant Human Three-Dimensional Pointing Movements: Integration of Independent Spatial and Temporal Motor Plans Simplifies Movement Dynamics. The Journal of Neuroscience 27(48), 13045–13064 (2007)

    Article  Google Scholar 

  4. Chen, W.B., Xiong, C.H., et al.: Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living. Gait & Posture 32(4), 475–481 (2010)

    Article  MathSciNet  Google Scholar 

  5. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. The Journal of Neuroscience 5(7), 1688–1703 (1985)

    Google Scholar 

  6. Guigon, E., Baraduc, P., et al.: Computational motor control: redundancy and invariance. Journal of Neurophysiology 97(1), 331 (2007)

    Article  Google Scholar 

  7. Kang, T., He, J., et al.: Determining natural arm configuration along a reaching trajectory. Experimental Brain Research 167(3), 352–361 (2005)

    Article  Google Scholar 

  8. Maoz, U., Berthoz, A., et al.: Complex Unconstrained Three-Dimensional Hand Movement and Constant Equi-Affine Speed. Journal of Neurophysiology 101(2), 1002–1015 (2009)

    Article  Google Scholar 

  9. Park, J., Chung, W.K.: Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Transactions on Robotics 21(5), 850–863 (2005)

    Article  Google Scholar 

  10. Petreska, B., Billard, A.: Movement curvature planning through force field internal models. Biological Cybernetics 100(5), 331–350 (2009)

    Article  Google Scholar 

  11. Pollick, F., Flash, T., et al.: Three-dimensional movements at constant affine velocity (1997)

    Google Scholar 

  12. Pollick, F.E., Maoz, U., et al.: Three-dimensional arm movements at constant equi-affine speed. Cortex 45(3), 325–339 (2009)

    Article  Google Scholar 

  13. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nature neuroscience 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  14. Torres, E.B., Zipser, D.: Simultaneous control of hand displacements and rotations in orientation-matching experiments. Journal of Applied Physiology 96(5), 1978–1987 (2004)

    Article  Google Scholar 

  15. Viviani, P., Terzuolo, C.: Trajectory determines movement dynamics. Neuroscience 7(2), 431–437 (1982)

    Article  Google Scholar 

  16. Zefran, M., Kumar, V.: A geometrical approach to the study of the Cartesian stiffness matrix. Journal of Mechanical Design 124, 30–38 (2002)

    Article  Google Scholar 

  17. Zefran, M., Kumar, V., et al.: On the generation of smooth three-dimensional rigid body motions. IEEE Transactions on Robotics and Automation 14(4), 576–589 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, W., Xiong, C., Sun, R., Huang, X. (2011). Humanoid Motion Planning in the Goal Reaching Movement of Anthropomorphic Upper Limb. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25486-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25485-7

  • Online ISBN: 978-3-642-25486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics