Directional Eigentemplate Learning for Sparse Template Tracker

  • Hiroyuki Seto
  • Tomoyuki Taguchi
  • Takeshi Shakunaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7088)


Automatic eigentemplate learning is discussed for a sparse template tracker. Using an eigentemplate learned from multiple sequences, a sparse template tracker can efficiently track a target that changes appearance. The present paper provides a feasible solution for eigentemplate learning when multiple image sequences are available. Two types of eigentemplates are compared in the present paper, namely, a single eigentemplate, and a set of directional eigentemplates. The single eigentemplate simply consists of all images learned from multiple sequences.On the other hand, directional eigentemplates are obtained by decomposing the single eigentemplate into three directions of the face poses. The sparse template tracker is also expanded to directional eigentemplates.Finally, the effectiveness of the provided solution is demonstrated in the learning and tracking experiments. The experimental results indicate that directional learning works well with small seed data,and that the directional eigentracker works better than the single eigentracker.


  1. 1.
    Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1296–1311 (2003)CrossRefGoogle Scholar
  2. 2.
    Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  3. 3.
    Williams, O., Blake, A., Cipolla, R.: A sparse probabilistic learning algorithm for real-time tracking. In: Proc. ICCV, pp. 353–360 (2003)Google Scholar
  4. 4.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  5. 5.
    Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision 26(1), 63–84 (1998)CrossRefGoogle Scholar
  6. 6.
    Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 29(2), 261–271 (2007)CrossRefGoogle Scholar
  7. 7.
    Cascia, M.L., Sclaroff, S., Athitsos, V.: Fast,reliable head tracking under varying illumination: An approach based on robust registration of texture-mapped 3d models. IEEE Trans. Pattern Analysis and Machine Intelligence 22(4), 322–336 (2000)CrossRefGoogle Scholar
  8. 8.
    Matsubara, Y., Shakunaga, T.: Sparse template matching and its application to real-time object tracking. IPSJ Transactions on Computer Vision and Image Media 46, 60–71 (2005) (in japanese no.sig9(cvim11))Google Scholar
  9. 9.
    Satake, J., Shakunaga, T.: Multiple target tracking by appearance-based condensation tracker using structure information. In: Proc. International Conference on Production Research, vol. 3, pp. 294–297 (2004)Google Scholar
  10. 10.
    Shakunaga, T., Matsubara, Y., Noguchi, K.: Appearance tracker based on sparse eigentemplate. In: Proc. Int’l Conf. on Machine Vision & Applications, pp. 13–17 (2005)Google Scholar
  11. 11.
    Oka, Y., Kuroda, T., Migita, T., Shakunaga, T.: Tracking 3d pose of rigid object by sparse template matching. In: Proc. the 5th International Conference on Image and Graphics, ICIG 2009, pp. 390–397 (2009)Google Scholar
  12. 12.
    Mikami, D., Otsuka, K., Yamato, J.: Memory-based particle filter for face pose tracking robust under complex dynamics. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 999–1006 (2009)Google Scholar
  13. 13.
    Mikami, D., Otsuka, K., Yamato, J.: Memory-Based Particle Filter for Tracking Objects with Large Variation in Pose and Appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 215–228. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Murphy-Chutorian, E., Trivedi, M.M.: Hyhope: Hybrid head orientation and position estimation for vision-based driver head tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)CrossRefGoogle Scholar
  15. 15.
    Oka, Y., Shakunaga, T.: Sparse eigentracker augmented by associative mapping to 3d shape. In: Proc. IEEE Conference on Automatic Face and Gesture Recognition (FG 2011), pp. 649–656 (2011)Google Scholar
  16. 16.
    Shakunaga, T., Noguchi, K.: Robust tracking of appearance by sparse template adaptation. In: Proc. 8th IASTED Int’l Conf. on Signal and Image Processing, pp. 85–90 (2006)Google Scholar
  17. 17.
    Sakabe, K., Taguchi, T., Shakunaga, T.: Automatic Eigentemplate Learning for Sparse Template Tracker. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 714–725. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hiroyuki Seto
    • 1
  • Tomoyuki Taguchi
    • 1
  • Takeshi Shakunaga
    • 1
  1. 1.Okayama UniversityJapan

Personalised recommendations