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Abstract. Automatic eigentemplate learning is discussed for a sparse
template tracker.Using an eigentemplate learned from multiple sequences,
a sparse template tracker can efficiently track a target that changes ap-
pearance. The present paper provides a feasible solution for eigentem-
plate learning when multiple image sequences are available. Two types of
eigentemplates are compared in the present paper, namely, a single eigen-
template,and a set of directional eigentemplates.The single eigentemplate
simply consists of all images learned from multiple sequences.On the
other hand, directional eigentemplates are obtained by decomposing the
single eigentemplate into three directions of the face poses. The sparse
template tracker is also expanded to directional eigentemplates.Finally,
the effectiveness of the provided solution is demonstrated in the learning
and tracking experiments. The experimental results indicate that direc-
tional learning works well with small seed data,and that the directional
eigentracker works better than the single eigentracker.

1 Introduction

Object tracking is one of the most significant problems in computer vision [1,2,
3,4,5,6,7,8,9,10,11,12,13,14,15]. Considerable research on unknown objects and
known objects has been conducted in a lot of applications.Among them,some ro-
bust algorithms were proposed for the tracking based on the eigenspace
techniques [5] with combining iterative projections and outlier detection. The
iterative projection approaches, however, often suffer from time-consuming im-
plementation and the “breakdown point” problems. In order to solve these prob-
lems, a sparse eigentemplate tracker was proposed by Shakunaga et al. [10] based
on a non-eigentemplate tracker [8]. In the tracker proposed by Shakunaga et
al., a particle filter is used in order to aviod iterative calculations. Shakunaga-
Noguchi [16] demonstrated that the tracker [8] could be converted to an adaptive
tracker by combining their sparse template tracking and an on-line learning tech-
nique of Black-Jepson [1]. Sakabe et al. [17] used the adaptive tracker for learning
the eigentemplate used in the sparse eigentemplate tracking and demonstrated
that the effectiveness of the learning. A tracker with memory-based particle filter
was developed from the sparse template tracker [8] by Mikami et al. [12, 13].In
their tracker, past history storage is used for robust tracking by calculating the
posterior face position with this storage.However, this tracker requires a large
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amount of past data.In order to carry out robust eigentemplate tracking us-
ing a small amount of image data, the present research is based on the tracker
proposed in [17].

In [17], an eigentemplate is learned from an image sequence. If the eigentem-
plate is learned from multiple sequences, then the tracker is expected to track
more efficiently in case of changes in appearance. In the generation of eigentem-
plates, two types of eigentemplates, namely, a single eigentemplate and direc-
tional eigentemplates, are compared.Directional eigentemplates are obtained by
classifying face templates into three directions. When the directional eigentem-
plates are used for eigentracker, the tracker selects appropriate eigentemplate
in each frame and reduces the overmatching effect of the unified eigentemplate
with respect to inappropriate poses. In addition, since the tracker evaluates the
poses of the target with three eigentemplates, the tracker can avoid converging
to a local minimum.

2 Learning Eigentemplate for Sparse Template Tracker

2.1 Adaptive Sparse Template Tracker

Automatic eigentemplate learning is possible, if an adaptive tracker is provided.
If the tracker can carry out complete and accurate tracking for the case in
which changes in appearance occur, then the problem of eigentemplate learning is
reduced to a simple problem. However, since there is no such complete tracker, we
must develop a learning method for a given tracker. The present paper basically
uses an adaptive sparse template tracker formulated in Shakunaga-Noguchi [16].
The tracker is not complete but good since it combines the sparse template
tracker and the WSL model proposed by Jepson et al. [1] for implementing an
adaptive real-time tracker. In their formulation, the WSL model is applied to
each pixel value, and an adaptive template, called the WSL template, is updated
by the on-line EM algorithm.During the updating phase, an image estimated by
the sparse template tracker is used to update the WSL model.Then, a dense
template is constructed from the adaptive template, and the sparse template
is updated. Thus, the tracker can carry out adaptive real-time tracking and
sequential learning.

2.2 Learning Eigentemplate

This paper basically uses the eigentemplate learning formulated by Sakabe et
al. [17]. Their method is summarized as follows: In tracking with the adaptive
tracker, the estimated image is evaluated at each frame.

Their formulation uses the following notation.Let Yt and Φ̃ = [Φ x] denote an
input image and the eigentemplate at time t, respectively. Let Qi(i = 1, 2, 3, 4)
denote partial indicator matrices which correspond to four quadrant regions
of the entire template, respectively, and let Q0 = Q1 + Q2 + Q3 + Q4 = I
hold. Then, for i = 0, 1, 2, 3, 4, a projection of a (partial) image QiYt onto the
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(homogeneous) eigentemplate, Φ̃, is represented as Y′
ti = Φ̃(QiΦ̃)+Yt. Thus, the

correlation Ci(Yt,Y′
ti) is calculated between QiYt and QiY′

ti.
Although Sakabe et al. [17] provided an image selection rule, a simpler rule is

used in the present paper. That is, when the following condition is satisfied, the
current input image Yt is appended to the learning set. Otherwise, the current
image is not appended to the learning set.

min
i=0,1,2,3,4

Ci(Yt,Y′
ti) < 0.7 (1)

2.3 Sparse Eigentemplate Tracker

When an eigenspace is constructed from a set of normalized template images, it
is used as an eigentemplate. The formulation of sparse template matching [16]
can be generalized to eigentemplate matching as follows:

Let x and Φ denote the mean vector and a matrix composed of the m most
significant eigenvectors. Let Φ̃ denote [Φ x]. Then, the eigentemplate matching
problem is formulated as follows:

arg min
T∈{T}

ε = arg min
T∈{T}

ρ̂(
1
β

P [Φ̃ỹ∗ − TY]), (2)

where ρ̂(x) indicates the summation of the Geman-McClure function, ỹ∗ is an
(m+1)-vector calculated for each T as ỹ∗ = (PΦ̃)+TY, and β is a normalization
parameter calculated for each T .

3 Learning and Tracking for Multiple Sequences

3.1 Eigentemplate Learning for Multiple Sequences

Once an eigentemplate is learned from an image sequence, the tracker can track
similar sequences using the eigentemplate. If an eigentemplate consists of im-
ages learned from more varied image sequences, the tracker is expected to track
against more varied changes of appearances. Therefore, in the present paper, two
types of eigentemplates learning are considered for multiple sequences. In 3.2,
simple expansion of Sakabe et al.’s method is discussed. The other expansion
is discussed in 3.3, where a set of directional eigentemplates are learned from
multiple sequences.

3.2 Simple Expansion of Sakabe et al.

As a simple expansion of the eigentemplate learning two types of learning should
be considered for multiple sequences.

The first type is parallel learning, in which each sequence is first used to obtain
a learning set of images independent of the other sequences. Then, the learning
sets,selected from each sequence, are merged to generate a single eigentemplate.
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Therefore, the result of parallel learning is invariant with respect to the order
of image sequences.On the other hand, the result may be redundant since each
parallel learning is carried out without any initial information.

The second type is cascade learning, which learns one sequence after another.
Since cascade learning starts from the eigentemplate obtained from other se-
quences, only a small number of images are learned in each sequence. On the
other hand, the results of learning may depend on the order of sequences used in
learning. In the present paper, the parallel learning is used for multiple learning
because no order problem is included in the learning.

3.3 Directional Eigentemplates

Once the single eigentemplate is learned from multiple sequences, the tracker
is expected to track efficiently for all of the changes in appearance in multiple
sequences. However, if the eigentemplate is constructed from too large a set of
various images without considering the face poses, the tracker may excessively
match inappropriate poses of the target. Actually, some combinations of multiple
sequences often result in inefficient tracking. In such cases, the single eigentem-
plate causes unstable tracking when the pose estimation error is generated.

In order to avoid such a critical problem, we consider decomposing an eigen-
template into three directions of the face (front, left, right) as shown in Fig. 1.
We call this set of eigentemplates “ directional eigentemplates”. By decomposing
the eigentemplate, the tracker is expected to select an appropriate eigentemplate
for the poses of the target.Therefore, the tracker will reduce overmatching and
avoid unstable tracking.

average Φ0 Φ1 Φ2

average Φ0 Φ1 Φ2

average Φ0 Φ1 Φ2

Fig. 1. Directional eigentemplates(front, left, right)
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3.4 Automatic Learning of Directional Eigentemplates

Learning of directional eigentemplates consists of two parts, “direction judg-
ment” and “learning judgment”. In order to discuss how to select the learning
set, we use the following notation. Let [Φd,xd] denote the seed directional eigen-
templates of each direction, and let Y0d denote the initial image of each direction
(d=f,l,r). The seed directional eigentemplates are provided in order to determine
the direction of each frame. Each of the eigentemplates consists of a few images
captured under different lighting conditions.

In the direction judgment, a projection Y′
td of input Yt is made for each

seed directional eigentemplate. Then, the correlation between the input and the
projection, C0(Yt,Y′

td), is calculated in each direction d.The direction providing
the highest correlation is determined as the direction of frame t.

After the direction judgment, the learning judgment is performed. Four corre-
lation are calculated between each quadrant imageYti(i=1,2,3,4) and the partial
projection imageY′

ti.Let the i-th correlation be denoted as Ci(Yti,Y′
ti). If the

correlation satisfies the condition(1), then the current input image Yt is ap-
pended to the learning set. Otherwise, the current image is not appended to the
learning set.

3.5 Expansion for Eigentemplate Tracking

Next, the tracker is expanded to directional eigentemplates. Let xi and Φi(i=f,l,r)
denote the mean vector and a matrix composed of the m most significant eigen-
vectors for each direction. Let Φ̃i denote [Φi xi]. The particle filter first evaluates
each particle and then selects the optimal particle in each direction as follows:

arg min
T∈{T}

ε = arg min
T∈{T}

ρ̂(
1
β

P [Φ̃iỹ∗ − TY]), (3)

Next, the proportion of each direction in the top particles are calculated by com-
paring ε, where top particles are a set of the best particles used to estimate the
position of the next frame. Finally, the top particles are selected according to the
proportion. In the selection phase, the top particles are basically selected from
the direction that provides the highest proportion. When the highest proportion
is less than 0.80, top particles are selected from the highest and the second di-
rections. In this way, the tracker is expected to perform stable pose estimation
as the pose of the target changes.

4 Experiments

4.1 Learning Directional Eigentemplates

Let us perform eigentemplate learning on the image sequences of Cascia et al. [7].
In this experiment, 30 trials of a set of directional learning were first carried out
for each jal sequence. For directional learning, a set of directional images, as
shown in Fig. 2, was provided for the seed directional eigentemplates. Since a
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Fig. 2. Images for the seed directional eigentemplates. Three seed images are shown in
each row. The front, left, and right directions are shown from top to bottom.

set of directional eigentemplates was constructed in each trial, a total of 30 sets
of directional eigentemplates were constructed from each jal sequence.

After learning, each sequencewas trackedby the sparse eigentrackerwith a set of
learnedeigentemplates. In tracking experiment,weusedthe eigentemplates learned
from jal3,4,5,6 and jal9 because these sequences included appropriate changes in
appearances. In other words, jal3,4, and 9 include up-and-down sequences, and
jal5 and 6 include right-and-left sequences. In some cases, the number of direc-

Table 1. Success rates(%) of learning and tracking with “s”ingle eigentemplate(S)
and “d”irectional eigentemplates(D).(X) under “D” indicates direction(s) used for di-
rectional tracking(“f”ront(F),”l”eft(L),”r”ight(R)). Test sequences were tracked with
the eigentemplate learned from each learning sequence.

learning sequence
jal3 jal4 jal5 jal6 jal9

test S D S D S D S D S D
sequence (F) (F) (LFR) (LFR) (F)

jal1 30 17 91 93 74 97 72 50 61 70
jal2 28 13 87 73 100 100 99 100 100 100
jal3 46 43 81 90 8 47 3 57 84 53
jal4 71 70 97 97 0 60 0 57 73 33
jal5 0 0 2 3 100 100 85 43 81 57
jal6 0 7 2 10 83 90 100 100 33 33
jal7 51 20 53 77 100 100 100 100 99 97
jal8 22 7 85 87 100 100 100 100 93 90
jal9 8 10 88 83 0 100 0 100 95 93

average 28.4 20.7 65.1 66.7 62.8 87.8 62.1 78.5 79.9 69.6
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50th frame 50th frame

53rd frame 53rd frame

65th frame 65th frame

Fig. 3. Comparison of tracking jal4 with two types of eigenfaces learned from jal6(left:
tracking with a single eigentemplate, right: tracking with directional eigentemplates)

tional eigentemplates varies from the results of the learning (the directions used
are listed in Table 1). After tracking, the results were compared with the correct
data for each sequence. In the evaluation, the averages of the estimation errors in
distance [pixel], rotation [deg], and scale, are used for evaluation. If the averages
satisfy d<4.0 [pixel], r<4.0 [deg], and s<0.2, then the tracking is judged as “suc-
cess”. Table 1 shows the success rates of the tracking with directional eigentem-
plates and those with single eigentemplate. The success rates indicate how well the
eigentemplates that are effective for tracking are learned.

In the learning phase, for the most part, the images were correctly learned
with respect to the directions. No confusion occurred between the right and left
directions. In a few cases, images that might be regarded as front images were
learned as left images. However, the eigentemplate could cover new appearances
that the eigentemplate did not cover before the learning.

As shown in Table 1, the results of the directional eigentemplates were some-
times lower than those of single eigentemplates. However, the average success
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Table 2. Success rates (%) of learning and tracking.The test sequences were tracked
with the eigentemplates learned from each learning set. The configuration of this table
is the same as that of Table 1.

learning sets
jal3+jal5 jal4+jal6 jal4+jal5 jal4+jal6 jal3+jal4 jal4+jal5 jal3+jal4

+jal6 +jal9 +jal5+jal6 +jal6+jal9 +jal5+jal6
test +jal9

sequence S D S D S D S D S D S D S D

jal1 40 40 100 80 90 83 90 77 77 87 93 87 83 90
jal2 53 67 100 97 100 100 100 100 87 100 100 100 100 100
jal3 60 40 87 83 57 67 80 97 83 73 50 50 87 83
jal4 77 70 100 97 100 93 100 100 100 100 100 83 100 100
jal5 100 97 0 20 90 100 0 27 63 100 93 100 63 100
jal6 37 93 100 100 77 100 100 100 67 100 87 100 63 100
jal7 67 63 100 97 100 100 100 100 97 100 100 100 100 100
jal8 67 73 100 97 100 100 100 100 87 100 100 100 100 100
jal9 67 70 100 97 100 100 100 100 93 100 100 100 100 100

average 63.0 67.8 87.4 85.2 90.0 93.7 85.6 88.9 83.7 95.6 91.5 91.1 88.5 97.0

rates were better with directional eigentemplates than those with a single eigen-
template.In particular, the averages of jal5 and jal6 increase considerably.
The directional eigentemplates improved pose estimation by selecting an ap-
propriate eigentemplate in each frame.

Examples of the tracking with two eigentemplates are as shown in Fig. 3. With
a single eigentemplate, tracking was stable until the 50th frame. However, the
pose estimation error occurred at the 53rd frame, and the error continued.Finally,
the tracker converged to local minimum at the 65th frame. On the other hand,
the pose estimation error occurred until the 53rd frame in the tracking with
directional eigentemplates. However, the tracker gradually corrected the pose of
the target, and the error was resolved at the 65th frame. The results show that
the directional eigentemplates are efficient for the pose estimation error on the
tracking and provide efficient tracking.

4.2 Learning Eigentemplates from Multiple Sequences

The results of the previous experiment revealed that an eigentemplate learned
from an image sequence can track other sequences to a certain extent. However,
the eigentemplate often fails to track certain sequences because the eigentem-
plate includes information included in the learning sequence. In the single eigen-
template tracking, the eigentemplate learned from jal3 could not track jal6,
whereas the eigentemplate learned from jal5 could track jal6.Therefore, if the
eigentemplate is learned from jal3 and jal5, the tracker is expected to carry
out stable tracking jal6. In the following experiment, we tried to construct the
eigentemplate from multiple sequences.
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105th frame 105th frame

150th frame 150th frame

185th frame 185th frame

Fig. 4. Comparison of tracking jal6(left:tracking with directional eigentemplate
learned from jal3,right:tracking with directional eigentemplates learned from
jal3+jal5)

In the experiment, we also compared the two types of eigentemplates using
tracking jal sequences. After learning each sequence, the images learned from
some sequences were combined to include the information of other sequences.
Therefore, the learned images included different poses, such as jal3 + jal5.(
Images learned from jal3 include up-and-down information, and images learned
from jal5 include right-and-left information.) The combinations of the learned
images were as shown in Table 2. The tracking was carried out 30 times for each
sequence with each eigentemplate.

Table 2 compares the success rate of tracking using a single eigentemplate(S)
and the directional eigentemplates(D). In the table, the results were evaluated
similar to the manner described in 4.2.

The results of tracking are shown in Table 2, which indicates that the tracker
can carry out stable tracking when the eigentemplate is learned from multi-
ple sequences.For example, the results for tracking jal6 were better with the
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45th frame 45th frame

55th frame 55th frame

60th frame 60th frame

Fig. 5. Comparison of tracking jal5 with two types of eigentemplates learned from
jal4+jal6+jal9(left:tracking with single eigentemplate, right:tracking with directional
eigentemplates)

eigentemplate learned from jal3 and jal5 than that learned from each sequence,
as shown in Fig. 4. The eigentemplate adapted to new appearance changes.
However, in some cases, the results became worse with additional eigentemplate
learning. For example, although, jal5 was tracked stably with the eigentemplate
learned from jal6, the tracker perform out the stable tracking when the eigen-
template was learned from jal4 and jal6. The images learned from jal4 and jal6
were inappropriate for tracking jal5, since the combinations of face positions and
lighting conditions obtained from jal4 and jal6 were different from those of jal5.
Therefore, the tracker could not estimate the correct position.

Comparing the results of tracking using two different types of eigentemplates,
the tracking with directional eigentemplates worked better than that with a
single eigentemplate. In some case, results of directional eigentemplates were
lower than those of a single eigentemplate. However, the average success rates was
higher than a single eigentemplate for most combinations, which indicates that
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the directional eigentemplates could use the information included in multiple
sequences more effectively than the single eigentemplate.

The example shown in Fig. 5 indicates how the tracker worked using the two
different types of eigentemplates. With single eigentemplate, a pose estimation
error occurred at the 45th frame, after which the error continued.Finally, the
tracker converged at a local minimum at the 60th frame. In contrast, for the same
sequence, the tracker using directional eigentemplates could track the target
correctly. In the sequence, when the target faced toward the right, the tracker
selected the right eigentemplate. Therefore, the tracker could efficiently estimate
the appropriate poses and track using the directional eigentemplates.

5 Conclusion

Directional eigentemplate learning was discussed for a sparse template tracker.
In the learning phase, the adaptive tracker adaptively tracks a target for the
eigentemplate learning. If an eigentemplate is decomposed into directional eigen-
templates, then the sparse eigentemplate tracker can estimate the pose of the
target with an appropriate eigentemplate.

The experimental results show that the directional learning worked well using
a few initial images, and the tracking worked well using directional eigentem-
plates learned from single image sequences. In the second experiment, the tracker
with directional eigentemplates was shown to work better than the single eigen-
template for multiple learning.In some cases, however, the tracker did not work
well. In the future, we would like to solve the problems involved in these cases
and develop a more stable on-line learning method.

This work has been supported in part by a Grant-In-Aid for Scientific Research
(No.20300067) from the Ministry of Education, Science, Sports, and Culture of
Japan.
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