Automatic Segmentation of Veterinary Infrared Images with the Active Shape Approach

  • Tom Wirthgen
  • Stephan Zipser
  • Ulrike Franze
  • Steffi Geidel
  • Franz Dietel
  • Theophile Alary
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


Modern livestock farming follows a trend to higher automation and monitoring standards. Novel systems for a health monitoring of animals like dairy cows are under development. The application of infrared thermography (IRT) for medical diagnostics was suggested long ago, but the lack of suitable technical solutions still prevents an efficient use. Within the R&D project VIONA new solutions are developed to provide veterinary IRT based diagnostic procedures with precise absolute temperature values of the animal surface. Amongst others this requires a reliable object detection and segmentation of the IR images. Due to the significant shape variation of interest objects advanced segmentation methods are necessary. The ”active shape” approach introduced by Cootes and Taylor [7] is applied to veterinary IR images for the first time. The special features of the thermal infrared spectrum require a comprehensive adaptation of this approach. The modified algorithm and first results of the successful application on approximately two million IR images of dairy cows are presented.


active shape segmentation infrared imaging precise temperature measurements veterinary diagnostics 


  1. 1.
    Barth, K.: Basic investigations to evaluate a highly sensitive infraredthermograph-technique to detect udder inflammation in cows. Milchwissenschaft 55(4), 607–609 (2000)Google Scholar
  2. 2.
    Bernhard, F.: Technische Temperaturmessung. In: VDI-Buch. Springer, Berlin (2004)Google Scholar
  3. 3.
    Berry, R., Kennedy, A., et al.: Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: Potential for mastitis detection. Can. Journal of Animal Science 83(4), 687–693 (2003)CrossRefGoogle Scholar
  4. 4.
    Büscher, W.: Current developments in livestock farming technology. Yearbook Agricultural Engineering 2011 23, 7–15 (2011)Google Scholar
  5. 5.
    Cheung, K.W., Yeung, D.Y., Chin, R.T.: On deformable models for visual pattern recognition. Pattern Rec. 35(7), 1507–1526 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Colak, A., Polat, B., et al.: Short Communication: Early Detection of Mastitis Using Infrared Thermography in Dairy Cows. J. Dairy Sci. 91(4), 4244–4248 (2008)CrossRefGoogle Scholar
  7. 7.
    Cootes, T.: Model-Based Methods in Analysis of Biomedical Images. In: Image Processing and Analysis, pp. 223–248. Oxford University Press, Oxford (2000)Google Scholar
  8. 8.
    Cootes, T., Taylor, C.: Active shape model search using local grey-level models: A quantitative evaluation. In: Illingworth, J. (ed.) British Machine Vision Conference, pp. 639–648. BMVA Press (1993)Google Scholar
  9. 9.
    Diakides, N., Bronzino, J.: Medical infrared imaging. CRC Press, Boca Raton (2008)Google Scholar
  10. 10.
    Jähne, B.: Digital Image Processing. Springer, Weinheim (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.P.: Deformable template models: A review. Signal Processing 71(2), 109–129 (1998)Google Scholar
  12. 12.
    Knizkova, I., Kung, P.: Applications of infrared thermography in animal production. J. of Agric. Faculty of Ondokuz Mayis University 22(3), 329–336 (2007)Google Scholar
  13. 13.
    Lawson, R.: Implications of surface temperatures in the diagnosis of breast cancer. Canadian Medical Association Journal 75(4), 309 (1956)Google Scholar
  14. 14.
    Fundamentals of metrology: evaluation of measurements; uncertainty of measurement. DIN1319-4. Beuth Verlag, berlin (February 1999) Google Scholar
  15. 15.
    Clinical thermometers - part 5: Performance of infra-red ear thermometers (with maximum device). DIN EN 12470-5. Beuth Verlag, berlin (September 2003) Google Scholar
  16. 16.
    Ring, E.F.J., McEvoy, H., et al.: New standards for devices used for the measurement of human body temperature. J. Med. Eng. Technol. 34(4), 249–253 (2010)CrossRefGoogle Scholar
  17. 17.
    Wirthgen, T.: Entwicklung und Berechnung IR-basierter Kenngrößen zur Analyse des Gesundheitszustandes von Kühen. diplom thesis, TU Dresden (2007)Google Scholar
  18. 18.
    Wirthgen, T., Zipser, S., et al.: Precise ir-based temperature measuring - a case study for the automatic health monitoring of dairy cows. In: SENSOR+TEST Conference - IRS2, (2011) (accepted paper)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tom Wirthgen
    • 1
  • Stephan Zipser
    • 1
  • Ulrike Franze
    • 2
  • Steffi Geidel
    • 2
  • Franz Dietel
    • 3
  • Theophile Alary
    • 4
  1. 1.Fraunhofer Institute for Transportation and Infrastructure SystemsDresdenGermany
  2. 2.HTW DresdenDresdenGermany
  3. 3.HTWK LeipzigLeipzigGermany
  4. 4.Universite de technologie de TroyesFrance

Personalised recommendations