Skip to main content

Therapeutic Potential of Phosphodiesterase Inhibitors in Parasitic Diseases

  • Chapter
  • First Online:
Phosphodiesterases as Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Protozoan parasites of the order kinetoplastida are the causative agents of three of the world’s most important neglected human diseases: African trypanosomiasis, American trypanosomiasis, and leishmaniasis. Current therapies are limited, with some treatments having serious and sometimes lethal side effects. The growing number of cases that are refractory to treatment is also of concern. With few new drugs in development, there is an unmet medical need for new, more effective, and safer medications. Recent studies employing genetic and pharmacological techniques have begun to shed light on the role of the cyclic nucleotide phosphodiesterases in the life cycle of these pathogens and suggest that these important regulators of cyclic nucleotide signaling may be promising new targets for the treatment of parasitic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

cAMP:

Cyclic 3′,5′ adenosine monophosphate

cGMP:

Cyclic 3′,5′ guanosine monophosphate

CL:

Cutaneous leishmaniasis

DAPI:

4,6′-diamidino-2-phenylindole

EPAC:

Exchange protein activated by cAMP

HAT:

Human African trypanosomiasis

IBMX:

Isobutyl-1-methylxanthine

MCL:

Mucocutaneous leishmaniasis

PDE:

Cyclic nucleotide phosphodiesterase

PKA:

Protein kinase A

RNAi:

RNA interference

SIF:

Stumpy inducing factor

VL:

Visceral leishmaniasis

References

  • Alonso GD, Schoijet AC, Torres HN, Flawia MM (2006) TcPDE4, a novel membrane-associated cAMP-specific phosphodiesterase from Trypanosoma cruzi. Mol Biochem Parasitol 145:40–49

    Article  PubMed  CAS  Google Scholar 

  • Alonso GD, Schoijet AC, Torres HN, Flawia MM (2007) TcrPDEA1, a cAMP-specific phosphodiesterase with atypical pharmacological properties from Trypanosoma cruzi. Mol Biochem Parasitol 152:72–79

    Article  PubMed  CAS  Google Scholar 

  • Alvar J, Aparicio P, Aseffa A, Den BM, Canavate C, Dedet JP, Gradoni L, Ter HR, Lopez-Velez R, Moreno J (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359, Table

    Article  PubMed  CAS  Google Scholar 

  • Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) The trypanosomiases. Lancet 362:1469–1480

    Article  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van AS, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  PubMed  CAS  Google Scholar 

  • Black S, Seed J (2001) World class parasites: volume 1 the African trypanosomes. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  • Breidbach T, Ngazoa E, Steverding D (2002) Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms. Exp Parasitol 101:223–230

    Article  PubMed  CAS  Google Scholar 

  • Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227

    Article  PubMed  CAS  Google Scholar 

  • Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375(9709):148–159

    Article  PubMed  Google Scholar 

  • Butler D (2007) Lost in translation. Nature 449:158–159

    Article  PubMed  CAS  Google Scholar 

  • Castro JA, de Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 25:471–479

    Article  PubMed  CAS  Google Scholar 

  • Chirac P, Torreele E (2006) Global framework on essential health R&D. Lancet 367:1560–1561

    Article  PubMed  Google Scholar 

  • Cohen J (2006) Global health. Public-private partnerships proliferate. Science 311:167

    Article  PubMed  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo MA, Sanguineti S, Reece JM, Birnbaumer L, Torres HN, Flawia MM (2004) Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi. Biochem J 378:63–72

    Article  PubMed  Google Scholar 

  • De Koning HP (2008) Ever-increasing complexities of diamidine and arsenical crossresistance in African trypanosomes. Trends Parasitol 24:345–349

    Article  PubMed  Google Scholar 

  • Delespaux V, De Koning HP (2007) Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat 10:30–50

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Benjumea R, Laxman S, Hinds TR, Beavo JA, Rascon A (2006) Characterization of a novel cAMP-binding, cAMP-specific cyclic nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi. Biochem J 399:305–314

    Article  PubMed  CAS  Google Scholar 

  • Farrell J (2002) World class parasites: volume 4 Leishmania. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Gong KW, Kunz S, Zoraghi R, Kunz RC, Brun R, Seebeck T (2001) cAMP-specific phosphodiesterase TbPDE1 is not essential in Trypanosoma brucei in culture or during midgut infection of tsetse flies. Mol Biochem Parasitol 116:229–232

    Article  PubMed  CAS  Google Scholar 

  • Gould MK, Vu XL, Seebeck T, De Koning HP (2008) Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: comparison with the Alamar Blue assay. Anal Biochem 382:87–93

    Article  PubMed  CAS  Google Scholar 

  • Huai Q, Liu Y, Francis SH, Corbin JD, Ke H (2004) Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol Chem 279:13095–13101

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Werner C, Weiss LM, Wittner M, Orr GA (2002) Molecular cloning and expression of the catalytic subunit of protein kinase A from Trypanosoma cruzi. Int J Parasitol 32:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Weiss LM, Nagajyothi F, Tanowitz HB, Wittner M, Orr GA, Bao Y (2006) Molecular cloning and characterization of the protein kinase A regulatory subunit of Trypanosoma cruzi. Mol Biochem Parasitol 149:242–245

    Article  PubMed  CAS  Google Scholar 

  • Hunger-Glaser I, Seebeck T (1997) Deletion of the genes for the paraflagellar rod protein PFR-A in Trypanosoma brucei is probably lethal. Mol Biochem Parasitol 90:347–351

    Article  PubMed  CAS  Google Scholar 

  • Ivey FD, Wang L, Demirbas D, Allain C, Hoffman CS (2008) Development of a fission yeast-based high-throughput screen to identify chemical regulators of cAMP phosphodiesterases. J Biomol Screen 13:62–71

    Article  PubMed  CAS  Google Scholar 

  • Johner A, Kunz S, Linder M, Shakur Y, Seebeck T (2006) Cyclic nucleotide specific phosphodiesterases of Leishmania major. BMC Microbiol 6:25

    Article  PubMed  Google Scholar 

  • Ke H, Wang H (2007) Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem 7:391–403

    Article  PubMed  CAS  Google Scholar 

  • Kunz S, Kloeckner T, Essen LO, Seebeck T, Boshart M (2004) TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei. Eur J Biochem 271:637–647

    Article  PubMed  CAS  Google Scholar 

  • Kunz S, Oberholzer M, Seebeck T (2005) A FYVE-containing unusual cyclic nucleotide phosphodiesterase from Trypanosoma cruzi. FEBS J 272:6412–6422

    Article  PubMed  CAS  Google Scholar 

  • Kunz S, Beavo JA, D’Angelo MA, Flawia MM, Francis SH, Johner A, Laxman S, Oberholzer M, Rascon A, Shakur Y, Wentzinger L, Zoraghi R, Seebeck T (2006) Cyclic nucleotide specific phosphodiesterases of the kinetoplastida: a unified nomenclature. Mol Biochem Parasitol 145:133–135

    Article  PubMed  CAS  Google Scholar 

  • Kunz S, Luginbuehl E, Seebeck T (2009a) Gene conversion transfers the GAF-A domain of phosphodiesterase TbrPDEB1 to one allele of TbrPDEB2 of Trypanosoma brucei. PLoS Negl Trop Dis 3:e455

    Article  PubMed  Google Scholar 

  • Kunz S, Minca M, Luginbuehl E, Bregy P, Seebeck T (2009b) Cyclic nucleotide signaling in the kinetoplastids. Handbook of cell signaling. Academic Press, New York, NY, pp 1543–1547

    Google Scholar 

  • Kutateladze TG (2007) Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog Lipid Res 46:315–327

    Article  PubMed  CAS  Google Scholar 

  • Laxman S, Beavo JA (2007) Cyclic nucleotide signaling mechanisms in trypanosomes:Possible targets for therapeutic agents. Molecular Interventions 7:203–215

    Article  PubMed  CAS  Google Scholar 

  • Laxman S, Rascon A, Beavo JA (2005) Trypanosome cyclic nucleotide phosphodiesterase 2B binds cAMP through its GAF-A domain. J Biol Chem 280:3771–3779

    Article  PubMed  CAS  Google Scholar 

  • Laxman S, Riechers A, Sadilek M, Schwede F, Beavo JA (2006) Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci USA 103:19194–19199

    Article  PubMed  CAS  Google Scholar 

  • Luscher A, Nerima B, Maser P (2006) Combined contribution of TbAT1 and TbMRPA to drug resistance in Trypanosoma brucei. Mol Biochem Parasitol 150:364–366

    Article  PubMed  Google Scholar 

  • Ma P, Wera S, van DP, Thevelein JM (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10:91–104

    PubMed  CAS  Google Scholar 

  • Mancini PE, Patton CL (1981) Cyclic 3′, 5′-adenosine monophosphate levels during the developmental cycle of Trypanosoma brucei brucei in the rat. Mol Biochem Parasitol 3:19–31

    Article  PubMed  CAS  Google Scholar 

  • McKean PG (2003) Coordination of cell cycle and cytokinesis in Trypanosoma brucei. Curr Opin Microbiol 6:600–607

    Article  PubMed  CAS  Google Scholar 

  • Nett IR, Martin DM, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, Ferguson MA (2009) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8:1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Oberholzer M, Marti G, Baresic M, Kunz S, Hemphill A, Seebeck T (2007) The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence. FASEB J 21:720–731

    Article  PubMed  CAS  Google Scholar 

  • Olliaro PL, Guerin PJ, Gerstl S, Haaskjold AA, Rottingen JA, Sundar S (2005) Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980-2004. Lancet Infect Dis 5:763–774

    Article  PubMed  Google Scholar 

  • Paine M, Wang M, Boykin D, Wilson W, De Koning H, Olson C, Polig G, Burri C, Brun R, Murilla G, Thuita JK, Barrett M, Tidwell R (2010) Diamidines for human African trypanosomiasis. Curr Opin Invest Drugs In Press:

    Google Scholar 

  • Priotto G, Kasparian S, Mutombo W, Ngouama D, Ghorashian S, Arnold U, Ghabri S, Baudin E, Buard V, Kazadi-Kyanza S, Ilunga M, Mutangala W, Pohlig G, Schmid C, Karunakara U, Torreele E, Kande V (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374:56–64

    Article  PubMed  CAS  Google Scholar 

  • Rangel-Aldao R, Triana F, Comach G, Abate T, Fernandez V, Mahon-Pratt D (1988) Intracellular signaling transduction in the differentiation of Trypanosoma cruzi: role of cAMP. Arch Biol Med Exp (Santiago) 21:403–408

    CAS  Google Scholar 

  • Rascon A, Soderling SH, Schaefer JB, Beavo JA (2002) Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei. Proc Natl Acad Sci USA 99:4714–4719

    Article  PubMed  CAS  Google Scholar 

  • Reed SL, Fierer AS, Goddard DR, Colmerauer ME, Davis CE (1985) Effect of theophylline on differentiation of Trypanosoma brucei. Infect Immun 49:844–847

    PubMed  CAS  Google Scholar 

  • Seebeck T, Schaub R, Johner A (2004) cAMP signalling in the kinetoplastid protozoa. Curr Mol Med 4:585–599

    Article  PubMed  CAS  Google Scholar 

  • Shalaby T, Liniger M, Seebeck T (2001) The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei. Eur J Biochem 268:6197–6206

    Article  PubMed  CAS  Google Scholar 

  • Siman-Tov MM, Aly R, Shapira M, Jaffe CL (1996) Cloning from Leishmania major of a developmentally regulated gene, c-lpk2, for the catalytic subunit of the cAMP-dependent protein kinase. Mol Biochem Parasitol 77:201–215

    Article  PubMed  CAS  Google Scholar 

  • Strickler JE, Patton CL (1975) Adenosine 3′, 5′-monophosphate in reproducing and differentiated trypanosomes. Science 190:1110–1112

    Article  PubMed  CAS  Google Scholar 

  • Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Tyler K, Miles M (2002) World class parasites: volume 7 American trypanosomiasis. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115(1–2):55–68

    Article  PubMed  Google Scholar 

  • Vassella E, Reuner B, Yutzy B, Boshart M (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 110(Pt 21):2661–2671

    PubMed  CAS  Google Scholar 

  • Walter RD (1974) 3′:5′-cyclic-AMP phosphodiesterase from Trypanosoma gambiense. Hoppe Seylers Z Physiol Chem 355:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Walter RD, Buse E, Ebert F (1978) Effect of cyclic AMP on transformation and proliferation of leishmania cells. Tropenmed Parasitol 29:439–442

    PubMed  CAS  Google Scholar 

  • Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H (2006) Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J Biol Chem 281:21469–21479

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yan Z, Geng J, Kunz S, Seebeck T, Ke H (2007) Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors. Mol Microbiol 66:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yan Z, Yang S, Cai J, Robinson H, Ke H (2008) Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochemistry 47:12760–12768

    Article  PubMed  CAS  Google Scholar 

  • Weatherly DB, Boehlke C, Tarleton RL (2009) Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 10:255

    Article  PubMed  Google Scholar 

  • Zoraghi R, Seebeck T (2002) The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei. Proc Natl Acad Sci USA 99:4343–4348

    Article  PubMed  CAS  Google Scholar 

  • Zoraghi R, Kunz S, Gong K, Seebeck T (2001) Characterization of TbPDE2A, a novel cyclic nucleotide-specific phosphodiesterase from the protozoan parasite Trypanosoma brucei. J Biol Chem 276:11559–11566

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

With many thanks to Simon Lockyer for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Shakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shakur, Y., de Koning, H.P., Ke, H., Kambayashi, J., Seebeck, T. (2011). Therapeutic Potential of Phosphodiesterase Inhibitors in Parasitic Diseases. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_20

Download citation

Publish with us

Policies and ethics