Skip to main content

Electromechanical Sensors Based on Carbon Nanotube Networks and Their Polymer Composites

  • Chapter
New Developments and Applications in Sensing Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 83))

Abstract

A network of entangled multiwall carbon nanotubes and the composite consisting of filter-supported multiwall carbon nanotube network are conductors whose conductivity is sensitive to compressive stress both in the course of monotonic stress growth and when loading/unloading cycles are imposed. The testing has shown as much as 100% network conductivity increase at the maximum applied stress. The entangled carbon nanotube networks are prepared by vacuum filtration method and peeled off from the filter. The carbon nanotubes are used in pristine condition or chemically functionalized. The filter-supported entangled networks are prepared by the nanotube dispersion filtration through a non-woven flexible polystyrene filter. The nanotubes infiltrate partly into the filter surface pores and link the accumulated filtrate layer with the filtering mat. The filter-support increases nanotube network mechanical integrity, the composite tensile ultimate strength and affects favorably the composite electrical resistance. Other obvious effect of the supporting polymer is reduction of the resistance temperature dependence. Moreover, the conductivity of carbon nanotube networks manifests also organic vapor dependence. The dependence is reversible, reproducible, selective as well as influenced by nanotube oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thostenson, E.T., Li, C.Y., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    Article  Google Scholar 

  2. Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009)

    Article  Google Scholar 

  3. Walters, D.A., et al.: In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 338, 14–20 (2001)

    Article  Google Scholar 

  4. Poquillon, D., Viguier, B., Andrieu, E.: Experimental data about mechanical behaviour during compression tests for various matted fibres. J. Mat. Sci. 40, 5963–5970 (2005)

    Article  Google Scholar 

  5. Allaoui, A., Hoa, S.V., Evesque, P., Bai, J.: Electronic transport in carbon nanotubes tangles under compression: The role of contact resistance. Scripta Mater. 61, 628–631 (2009)

    Article  Google Scholar 

  6. Kukowecz, A., et al.: Multiwall carbon nanotubes films surface-doped with electroceramics for sensor applications. Phys. Stat. Sol. 245, 2331–2334 (2008)

    Article  Google Scholar 

  7. Kastanis, D., Tasis, D., Papagelis, K., Parthertios, J., Tsakiroglou, C., Galiotis, C.: Oxidized multi-walled carbon nanotube film fabrication and characterization. Adv. Compos. Lett. 16, 243–248 (2007)

    Google Scholar 

  8. Ham, H.T., Choi, Y.S., Chung, I.J.: An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Colloid Interf. Sci. 286, 216–223 (2005)

    Article  Google Scholar 

  9. Chern, C.S., Wu, L.J.: Microemulsion polymerization of styrene stabilized by sodium dodecyl sulfate and short-chain alcohols. J. Polym. Sci. Part A: Polym. Chem. 39, 3199–3210 (2001)

    Article  Google Scholar 

  10. Kimmer, D., et al.: Polyurethane/MWCNT nanowebs prepared by electrospinning process. J. Appl. Polym. Sci. 111, 2711–2714 (2009)

    Article  Google Scholar 

  11. Slobodian, P., Kralova, D., Lengalova, A., Novotny, R., Saha, P.: Adaptation of Polystyrene/Multi-Wall Carbon Nanotube Composite Properties In Respect of its Thermal Stability. Polym. Composite 31, 452–458 (2010)

    Google Scholar 

  12. Pauw, L.J.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Repts 13, 1–9 (1958)

    Google Scholar 

  13. Rasheed, A., Howe, J.Y., Dadmun, M.D., Britt, P.F.: The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon 45, 1072–1080 (2007)

    Article  Google Scholar 

  14. Hernadi, K., et al.: Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141, 203–209 (2001)

    Article  Google Scholar 

  15. Wang, X.B., et al.: Radical functionalization of single-walled carbon nanotubes with azo(bisisobutyronitrile). Appl. Surf. Sci. 253, 7435–7437 (2007)

    Article  Google Scholar 

  16. Li, Q., Ma, Y., Mao, C., Wu, C.: Grafting modification and structural degradation of multi-walled carbon nanotubes under the effect of ultrasonics sonochemistry. Ultrason. Sonochem. 16, 752–757 (2009)

    Article  Google Scholar 

  17. Shelimov, K.B., et al.: Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 282, 429–434 (1998)

    Article  Google Scholar 

  18. Yeh, C.S.: A Study of Nanostructure and Properties of Mixed Nanotube Buckypaper Materials: Fabrication, Process Modeling Characterization, and Property Modeling, Ph.D. Thesis, The Florida State University (2007)

    Google Scholar 

  19. Yaglioglu, O., Hart, A.J., Martens, R., Slocum, A.H.: Method of characterizing electrical contact properties of carbon nanotube coated surfaces. Rev. Sci. Instrum. 77, 095105/1-3 (2006)

    Google Scholar 

  20. Allaoui, A., Hoa, S.V., Pugh, M.D.: The electronic transport properties and microstructures of carbon nanofiber/epoxy composites. Compos. Sci. Technol. 68, 410–416 (2008)

    Article  Google Scholar 

  21. Kaiser, A.B., Park, Y.W., Kim, G.T., Choi, E.S., Dusberg, G., Roth, S.: Electronic transport in carbon annotate ropes and mats. Synth. Met. 103, 2547–2550 (1999)

    Article  Google Scholar 

  22. Shiraishi, M., Ata, M.: Conduction mechanism in single-walled carbon nanotubes. Synth. Met. 128, 235–239 (2002)

    Google Scholar 

  23. Kulesza, S., Szroeder, P., Patyk, J.K., Szatkowski, J., Kozanecki, M.: High-temperature electrical transport of buckypapers composed of doped single-walled carbon nanotubes. Carbon 44, 2178–2183 (2006)

    Article  Google Scholar 

  24. Smajda, R., Kukovecz, A., Konya, Z., Kiricsi, I.: Structure and gas permeability of multi-wall carbon nanotube buckypapers. Carbon 45, 1176–1184 (2007)

    Article  Google Scholar 

  25. Agnihotri, S., Mota, J.P.B., Rostam-Abadi, M., Rood, M.J.: Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J. Phys. Chem. B 110, 7640–7647 (2006)

    Article  Google Scholar 

  26. Romanenko, A., et al.: Influence of helium, hydrogen, oxygen, air and methane on conductivity of multiwalled carbon nanotubes. Sensor Actuat. A-Phys. 138, 350–354 (2007)

    Article  Google Scholar 

  27. Qureshi, A., Kang, W.P., Davidson, J.L., Gurbuz, Y.: Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing application. Diam. Relat. Mater. 18, 1401–1420 (2009)

    Article  Google Scholar 

  28. Hussain, C.M., Saridara, C., Mitra, S.: Microtrapping characteristics of single and multi-walled carbon nanotubes. J. Chromatogr. A 1185, 161–166 (2008)

    Article  Google Scholar 

  29. Tournus, F., Latil, S., Heggie, M.I., Charlier, J.C.: Pi-stacking interaction between carbon nanotubes and organic molecules. Phys. Rev. B 72, Article No. 075431 (2005)

    Google Scholar 

  30. Mowbray, D.J., Morgan, C., Thygesen, K.S.: Influence of O-2 and N-2 on the conductivity of carbon nanotube networks. Phys. Rev. B 79, article No. 195431 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slobodian, P., Riha, P., Olejnik, R. (2011). Electromechanical Sensors Based on Carbon Nanotube Networks and Their Polymer Composites. In: Mukhopadhyay, S.C., Lay-Ekuakille, A., Fuchs, A. (eds) New Developments and Applications in Sensing Technology. Lecture Notes in Electrical Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17943-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17943-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17942-6

  • Online ISBN: 978-3-642-17943-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics