Skip to main content

Theoretical Model of Mobile Ions Distribution and Ionic Current in the MOS Oxide

  • Chapter
  • First Online:
Transport in Metal-Oxide-Semiconductor Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1606 Accesses

Abstract

A theoretical model of ion distribution, which is based on the concept that the equilibrium concentration of the ions is obtained when the combined mobilizing forces, namely, thermal diffusion, internal, and external electric fields, has been discussed. In order to validate the present theoretical model, the flat-band-voltage shift ΔVFB, which is due to the presence of the ionic oxide charge, has been calculated and compared with the experimental value. To further test the validity of this model, the ionic current–voltage characteristic has also been determined and compared with the experimental one by applying a slow linear ramp voltage to the gate at high temperature (TVS technique). An agreement between the experimental and computed data provides a support that gives easier formulation to apply for determining the flat-band-voltage shift ΔVFB due to the effect of this oxide charge type as well as deriving the theoretical ionic I–V characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicollian, E.H., Brews, J.R.: MOS Physics and Technology. Wiley, New York (1982)

    Google Scholar 

  2. Grove, A.S., Deal, B.E., Snow, E.H., Sah, C.T.: Investigation of thermally oxidized silicon surface using MOS structures. Solid-St. Electr. 145–163 (1965)

    Google Scholar 

  3. Yamin, M.: Charge storage effects in silicon dioxide films. IEEE Trans. Elect. Dev. ED-12, 88–96 (1965)

    Google Scholar 

  4. Chou, N.J.: Application of triangular voltage sweep method to mobile charge studies in MOS structures. J. Electrochem. Soc. 118, 601–609 (1971)

    Article  CAS  Google Scholar 

  5. Hickmott, T.W.: Thermally stimulated ionic conductivity of sodium in thermal. J. Appl. Phys. 46, 2583–2598 (1975)

    Article  CAS  Google Scholar 

  6. Przewlocki, H.M., Marciniak, W.: The triangular voltage sweep method as a tool in studies of mobile charge in MOS structures. Phys. Stat. Sol. (a) 29, 265–274 (1975)

    Article  CAS  Google Scholar 

  7. Bentarzi, H., Bouderbala, R., Zerguerras, A.: Ionic current in MOS structures. Ann. Telecommun. 59(3–4), 471–478 (2004)

    Google Scholar 

  8. Mitra, V., Bentarzi, H., Bouderbala, R., et al.: A theoretical model for the density distribution of mobile ions in the oxide of the metal-oxide-semiconductor structures. J. Appl. Phys. 73, 4287–4291 (1993)

    Article  CAS  Google Scholar 

  9. Kuhn, M., Silversmith, D.J.: Ionic contamination and transport of mobile ions in MOS structures. J. Electrochem. Soc. 118, 966–970 (1971)

    Article  CAS  Google Scholar 

  10. Romanov, V.P., Chaplygin, Yu.A.: Stationary distribution of mobile charge in the dielectric of MOS structures. Phy. Stat. (a) 53, 493–498 (1979)

    Google Scholar 

  11. Hillen, M.W.: Dynamic behavior of mobile ions in SiO2 layers. In: Partelides, S.T. (ed.) The Physics of SiO2 and Its Interface. Pergamon, New York (1978)

    Google Scholar 

  12. Hillen, M.W., Verwey, J.F.: Mobile ions in SiO2 layers on Si. In: Barbottain, G., Vapaille, A. (eds.) Instabilities in Silicon Devices. Amsterdam (1986)

    Google Scholar 

  13. Stagg, J.P.: Drift mobilities of Na+ and K+ ions in SiO2 films. Appl. Phys. Lett. 31, 532–533 (1977)

    Article  CAS  Google Scholar 

  14. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

  15. Boudry, M.R., Stagg, J.P.: the kinetic behavior of mobile ions in the Al–SiO2–Si System. J. Appl. Phys. 50, 942–950 (1979)

    Article  CAS  Google Scholar 

  16. O’Dwyer, J.J.: The Theory of Electrical Conduction and Breakdown in Solid Dielectrics. Clarendon, Oxford (1973)

    Google Scholar 

  17. Av-Rom, M., Shatzkes, M., Distefano, T.H., Cadoff, I.B.: The nature of electron tunneling in SiO2. In: Pantelider, S.T. (ed.) The Physics of SiO2 and its Interface. Pergamon, New York (1978)

    Google Scholar 

  18. Grove, A.S.: Physics and Technology of Semiconductor Devices. Wiley, New York (1967)

    Google Scholar 

  19. Tangena, A.G., Middelhoek, J., DeRooij, N.F.: Influence of positive ions on the current–voltage characteristics of MOS structures, J. Appl. Phys. 49, 2876–2879 (1978)

    Google Scholar 

  20. Feigl, F.J., Butler, S.R.: Electrochem. Soc. Meeting, Atlanta Oct 9–14 (1977)

    Google Scholar 

  21. Raychaudhuri, A., Ashok, A., Kar, S.: Ion-dosage dependent room-temperature hystersis in MOS structures with thin oxides. IEEE Trans. Elect. Dev. 38, 316–322 (1991)

    Article  CAS  Google Scholar 

  22. Hofstein, S.R.: IEEE Trans. Elect. Dev. ED-14, 749 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bentarzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bentarzi, H. (2011). Theoretical Model of Mobile Ions Distribution and Ionic Current in the MOS Oxide. In: Transport in Metal-Oxide-Semiconductor Structures. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16304-3_7

Download citation

Publish with us

Policies and ethics