Skeleton Simplification by Key Points Identification

  • Gabriel Rojas-Albarracín
  • Carlos A. Carbajal
  • Antonio Fernández-Caballero
  • María T. López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)


The current skeletonisation algorithms, based on thinning, extract the morphological features of an object in an image but the skeletonized objects are coarsely presented. This paper proposes an algorithm which goes beyond that approach by changing the coarse line segments into perfect “straight” line segments, obtaining points, angles, line segment size and proportions. Our technique is applied in the post-processing phase of the skeleton, which improves it no matter which skeletonisation technique is used, as long as the structure is made with one-pixel width continuous line segments. This proposal is a first step towards human activity recognition through the analysis of human poses represented by their skeletons.


Thinning skeletonisation image post-processing 


  1. 1.
    Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: Shape at its absolute scale. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(12), 2188–2203 (2008)CrossRefGoogle Scholar
  2. 2.
    Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007)CrossRefGoogle Scholar
  4. 4.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  5. 5.
    Baseski, E., Erdem, A., Tari, S.: Dissimilarity between two skeletal trees in a context. Pattern Recognition 42(3), 370–385 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 153–171. MIT Press, Cambridge (1967)Google Scholar
  7. 7.
    Bouix, S., Siddiqi, K.: Optics, mechanics, and Hamilton-Jacobi skeletons. Advances in Imaging and Electron Physics 135, 1–39 (2005)CrossRefGoogle Scholar
  8. 8.
    Chin, R.T., Wan, H.K., Stover, D.L.: A one-pass thinning algorithm and its parallel implementation. Computer Vision, Graphics, and Image Processing 40(1), 30–40 (1987)CrossRefGoogle Scholar
  9. 9.
    Danielsson, P.: Euclidean distance mapping. Computer Vision, Graphics, and Image Processing 14, 227–248 (1980)CrossRefGoogle Scholar
  10. 10.
    Davies, E.R., Plummer, A.P.N.: Thinning algorithms: A critique and a new methodology. Pattern Recognition 14, 53–63 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Communications of the ACM 15(9), 827–837 (1972)CrossRefGoogle Scholar
  12. 12.
    Ge, Y., Fitzpatrick, J.M.: On the generation of skeletons from discrete euclidean distance maps. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(11), 1055–1066 (1996)CrossRefGoogle Scholar
  13. 13.
    Goh, W.B.: Strategies for shape matching using skeletons. Computer Vision and Image Undertanding 110(3), 326–345 (2008)CrossRefGoogle Scholar
  14. 14.
    Hall, R.W.: Fast parallel thinning algorithms: Parallel speed and connectivity preservation. Communications of the ACM 32(1), 124–131 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hilditch, C.: Linear skeletons from square cupboards. Machine Intelligence 4, 403–420 (1969)Google Scholar
  16. 16.
    Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision 15(3), 189–224 (1995)CrossRefGoogle Scholar
  17. 17.
    Krinidis, S., Chatzis, V.: A skeleton family generator via physics-based deformable models. IEEE Transactions on Image Processing 18(1), 1–11 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kwok, P.C.K.: A thinning algorithm by contour generation. Communications of the ACM 31(11), 1314–1324 (1988)CrossRefGoogle Scholar
  19. 19.
    Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 869–885 (1992)CrossRefGoogle Scholar
  20. 20.
    Leymarie, F., Levine, M.D.: Simulating the grassfire transform using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(1), 56–75 (1992)CrossRefGoogle Scholar
  21. 21.
    Ogniewicz, R.L., Ilg, M.: Voronoi skeletons: Theory and applications. In: Proc. Conference on Computer Vision and Pattern Recognition, pp. 63–69 (1992)Google Scholar
  22. 22.
    Ogniewicz, R.L., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognition 28(3), 343–359 (1995)CrossRefGoogle Scholar
  23. 23.
    Pavlidis, T.: A thinning algorithm for discrete binary images. Computer Vision, Graphics, and Image Processing 13, 142–157 (1980)CrossRefGoogle Scholar
  24. 24.
    Rizvandi, N.B., Pizurica, A., Philips, W.: Automatic individual detection and separation of multiple overlapped nematode worms using skeleton analysis. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 817–826. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Scott, G.L., Turner, S.C., Zisserman, A.: Using a mixed wave/diffusion process to elicit the symmetry set. Image and Vision Computing 7(1), 63–70 (1989)CrossRefGoogle Scholar
  26. 26.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5), 550–571 (2004)CrossRefGoogle Scholar
  27. 27.
    Tari, S., Shah, J., Pien, H.: Extraction of shape skeletons from gray-scale images. Computer Vision and Image Understanding 66(2), 133–146 (1997)CrossRefGoogle Scholar
  28. 28.
    Xie, W., Thompson, R.P., Perucchio, R.: A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton. Pattern Recognition 36(7), 1529–1544 (2003)CrossRefzbMATHGoogle Scholar
  29. 29.
    Xu, W., Wang, C.X.: A fast thinning algorithm implemented on a sequential computer. IEEE Systems, Man, and Cybernetics 17(5), 847–851 (1987)CrossRefGoogle Scholar
  30. 30.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Communications of the ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gabriel Rojas-Albarracín
    • 1
  • Carlos A. Carbajal
    • 1
  • Antonio Fernández-Caballero
    • 1
    • 2
  • María T. López
    • 1
    • 2
  1. 1.Instituto de Investigación en Informática de AlbaceteAlbaceteSpain
  2. 2.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations