Small Drawings of Series-Parallel Graphs and Other Subclasses of Planar Graphs

  • Therese Biedl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


In this paper, we study small planar drawings of planar graphs. For arbitrary planar graphs, Θ(n 2) is the established upper and lower bound on the worst-case area. It is a long-standing open problem for what graphs smaller area can be achieved, with results known only for trees and outer-planar graphs. We show here that series-parallel can be drawn in O(n 3/2) area, but 2-outer-planar graphs and planar graphs of proper pathwidth 3 require Ω(n 2) area.


  1. 1.
    Bertolazzi, P., Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: How to draw a series-parallel digraph. Intl. J. Comput. Geom. Appl. 4, 385–402 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Biedl, T.: New lower bounds for orthogonal graph drawings. Journal of Graph Algorithms and Applications 2(7), 1–31 (1998)MathSciNetGoogle Scholar
  3. 3.
    Biedl, T.: Drawing outer-planar graphs in O(nlogn) area. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 54–65. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.: Treewidth: algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Cohen, R., Di Battista, G., Tamassia, R., Tollis, I.: Dynamic graph drawings: Trees, series-parallel digraphs, and planar st-digraphs. SIAM J. Comput. 24(5), 970–1001 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing: Algorithms for Geometric Representations of Graphs. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  8. 8.
    Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 89–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Dujmovic, V., Fellows, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.: On the parameterized complexity of layered graph drawing. Algorithmica 52, 267–292 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dujmovic, V., Morin, P., Wood, D.K.: Layout of graphs with bounded tree-width. SIAM J. on Computing 34(3), 553–579 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer grids in two and three dimensions. Journal of Graph Algorithms and Applications 7(4), 335–362 (2003)MathSciNetGoogle Scholar
  12. 12.
    Frati, F.: Straight-line drawings of outerplanar graphs in o(dn log n) area. In: Proceedings of the 19th Canadian Conference on Computational Geometry (CCCG 2007), pp. 225–228 (2007)Google Scholar
  13. 13.
    Frati, F.: A lower bound on the area requirements of series-parallel graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 159–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings of planar graphs. In: Twentieth Annual ACM Symposium on Theory of Computing, pp. 426–433 (1988)Google Scholar
  15. 15.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hong, S.H., Eades, P., Quigley, A., Lee, S.H.: Drawing algorithms for series-parallel digraphs in two and three dimensions. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 198–209. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Leiserson, C.: Area-efficient graph layouts (for VLSI). In: 21st IEEE Symposium on Foundations of Computer Science, pp. 270–281 (1980)Google Scholar
  19. 19.
    Miura, K., Nishizeki, T., Nakano, S.: Grid drawings of 4-connected plane graphs. Discrete Computational Geometry 26, 73–87 (2001)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Schnyder, W.: Embedding planar graphs on the grid. In: 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148 (1990)Google Scholar
  21. 21.
    Tamassia, R., Tollis, I.: A unified approach to visibility representations of planar graphs. Discrete Computational Geometry 1, 321–341 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tayu, S., Nomura, K., Ueno, S.: On the two-dimensional orthogonal drawing of series-parallel graphs. Discr. Appl. Mathematics 157(8), 1885–1895 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wismath, S.: Characterizing bar line-of-sight graphs. In: 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, USA, pp. 147–152 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Therese Biedl
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations