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Abstract. In this paper, we study small planar drawings of planar
graphs. For arbitrary planar graphs, Θ(n2) is the established upper and
lower bound on the worst-case area. It is a long-standing open problem
for what graphs smaller area can be achieved, with results known only
for trees and outer-planar graphs. We show here that series-parallel can
be drawn in O(n3/2) area, but 2-outer-planar graphs and planar graphs
of proper pathwidth 3 require Ω(n2) area.

1 Introduction

A planar graph is a graph that can be drawn without crossing. It was established
20 years ago [15,20] that it has a straight-line drawing in area O(n2) with vertices
placed at grid points. This is asymptotically optimal, since there are planar
graphs that need Ω(n2) area [14].

A number of other graph drawing models (e.g., poly-line drawings, orthogonal
drawings, visibility representations) exist for planar graphs. In all these models,
O(n2) area can be achieved for planar graphs, see for example [17, 23]. On the
other hand, Ω(n2) area is needed, in all models, for the graph in [14]. This raises
the natural question [5] whether o(n2) area is possible for subclasses of planar
graphs.

Known results. Every tree has a straight-line drawing in O(n log n) area and
in O(n) area if the maximum degree is asymptotically smaller than n. See [7] for
references and many other upper and lower bounds regarding drawings of trees.

It is quite easy (and appears to be folklore) to create straight-line drawings of
outer-planar graphs that have area O(nd), where d is the diameter of the dual
tree of the graph. In an earlier paper [3], we showed that any outer-planar graph
has a visibility representation (and hence a poly-line drawing) of area O(n log n).
Since then, some work has been done on improving the bounds for straight-line
drawings, with the best bounds now being O(n1.48) [8] and O(Δn log n) [12].

Many drawing results are known for series-parallel graphs, see e.g. [1,6,16,
22]. However, the emphasis here was on displaying the series-parallel structure
of the graph, and/or to use the structure to allow for additional constraints. All
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known algorithms bound the area by O(n2) area or worse. Quite recently, Frati
proved a lower bound (for straight-line or poly-line drawings) of Ω(n log n) for
a series-parallel graph [13].

No graph drawing results specifically tailored to k-outer-planar graphs
(for k ≥ 2), or planar graphs with small treewidth/pathwidth appear to be
known for 2-dimensional drawings. Planar graphs with small pathwidth play a
critical role in drawings where the height is bounded by a constant [9], but not
all graphs with small pathwidth have such a drawing.

While higher-dimensional drawings are not the focus of our paper, we would
like to mention briefly that all graph classes considered in this paper can be
drawn with linear area in 3D, because they are partial k-trees for constant k;
see [10], and also [11] for some earlier 3D results for outer-planar graphs.

We would also like to note that all these graphs have small separators, hence
all of them allow a non-planar two-dimensional orthogonal drawing in O(n) area
if the maximum degree is at most 4 [18].

Our Results. In this paper, we provide the following results:

– Every series-parallel graph has a visibility representation with O(n3/2) area.
– A series-parallel graph for which at most f graphs are combined in parallel

has a visibility representation with O(fn log n) area. We know f ≤ Δ.
– There are series-parallel graphs that require Ω(n2) area in any poly-line

drawing that respects the planar embedding.
– There are 2-outer-planar graphs that require Ω(n2) area in any poly-line

drawing. Moreover, these graphs have pathwidth 3.
– There are graphs of proper pathwidth 3 and maximum degree 4 that require

Ω(n2) area.

For algorithms, we restrict our attention to visibility representations, because
any such drawing can be converted to a poly-line drawing with asymptotically
the same area. Hence all our upper bounds also hold for poly-line drawings.

2 Background

Let G = (V, E) be a graph with n = n(G) = |V | vertices and m = m(G) = |E|
edges. Throughout this paper, we will assume that G is simple (has no loops
or multiple edges) and planar, i.e., can be drawn without crossing. A planar
drawing splits the plane into connected pieces; the unbounded piece is called the
outer-face, all other pieces are called interior faces. An outer-planar graph is a
planar graph that can be drawn such that all vertices are on the outer-face.

A 2-terminal series-parallel graph with terminals s, t is a graph defined recur-
sively with one of the following three rules: (a) An edge (s, t) is a 2-terminal
series-parallel graph. (b) If Gi, i = 1, 2 are 2-terminal series-parallel graphs with
terminals si and ti, then in a series composition we identify t1 with s2 to obtain
a 2-terminal series-parallel graph with terminals s1 and t2. (c) If Gi, i = 1, . . . , k,
are 2-terminal series-parallel graphs with terminals si and ti, then in a parallel
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composition we identify s1, s2, . . . , sk into one terminal s and t1, t2, . . . , tk into
one terminal t to obtain a 2-terminal series-parallel graph with terminals s and
t. Here k is as large as possible, i.e., none of the graphs Gi is itself obtained via
a parallel composition. The fan-out of a series-parallel graph is the maximum
number of subgraphs k used in a parallel composition.

Given a 2-terminal series-parallel graph G, a subgraph from the composition
is any of the subgraphs G1, . . . , Gk that was used to create G, or recursively any
subgraph from the composition of G1, . . . , Gk. Since we never consider any other
subgraphs, we will say “subgraphs” instead of “subgraphs from the composition”.

A series-parallel graph, or SP-graph for short, is a graph for which every bicon-
nected component is a 2-terminal series-parallel graph. It is maximal if no edge
can be added while maintaining a simple SP-graph. Any maximal series-parallel
graph is a 2-terminal series-parallel graph where in any parallel composition
there exists an edge between the terminals, and in any series composition each
subgraph is either an edge or obtained from a parallel composition. We will
only considering drawings of maximal series-parallel graph, since this makes no
difference for asymptotic upper bounds on the area of graph drawings.

A polyline-drawing is an assignment of vertices to points and edges to a path of
finitely many line segments connecting their endpoints. A visibiliy representation
is an assignment of vertices to boxes1 and edges to horizontal or vertical line
segment connecting boxes of their endpoints. For a planar graph, such drawings
should be planar, i.e., have no crossing. We also assume that all defining features
have integral coordinates; in particular points of vertices and transition-points
(bends) in the routes of edges have integral coordinates, and boxes of vertices
have integral corner points. We allow boxes to be degenerate, i.e., to be line
segments or points.

The width of a box is the number of vertical grid lines (columns) that are
occupied by it. The height of a box is the number of horizontal grid lines (rows)
that are occupied by it. A drawing whose minimum enclosing box has width w
and height h is called a w × h-drawing, and has area w · h.

3 Visibility Representations of Series-Parallel Graphs

In this section, we study how to create a small visibility representation of a
maximal SP-graph G. Our algorithm draws G and recursively all its subgraphs
H . To ease putting drawings together, we put constraints on the drawing (see
also Fig. 1):

– The visibility representation is what we call flat: every vertex is represented
by a horizontal line segment.

– Vertex s is placed in the upper right corner of the bounding box.
– Vertex t is placed in the lower right corner of the bounding box.

With our construction we develop a recursive formula for the height: h(m) is
the maximum height of a drawing obtained with our algorithm over all maximal
1 In this paper, the term “box” always refers to an axis-parallel box.
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Fig. 1. Illustration of the invariant, and the base case n = 2

SP-graphs with m edges.(We have m = 2n − 3, but use m to simplify the
computations.) In the base case (m = 1), simply place s atop t; see Fig. 1. The
conditions are clearly satisfied, and we have h(m) = 2 for m = 1.

Modifying drawings. If m ≥ 2, then we obtain the drawing by merging draw-
ings of subgraphs together suitably. Before doing this, we sometimes modify them
with an operation used earlier [3]. We say that in a drawing a vertex spans the top
(bottom) row if its vertex box contains both the top (bottom) left point and the
top (bottom) right point of the smallest enclosing box of the drawing. We can al-
ways achieve that terminal s spans the top row after adding a row; we call this
releasing terminal s. Similarly we can also release terminal t after adding a row.

Lemma 1. [3] Let Γ (H) be a flat visibility representation of H of height h ≥ 2
that satisfies the invariant. Then there exists a flat visibility representation Γ ′(H)
of H of height h + 1 that satisfies the invariant, and vertex s spans the top row.

Subgraphs from parallel compositions. Assume H is a subgraph of G which
is obtained in a parallel composition from subgraphs H1, . . . , Hk, k ≥ 2. After
possible renaming, assume that mi = m(Hi) satisfies m1 ≥ m2 ≥ . . . ≥ mk.
Recursively obtain drawings of H1, . . . , Hk; the drawing of Hi has height at
most h(mi). Combine them after releasing both terminals in all of H2, . . . , Hk

and adding rows so that all drawings have the same height. Place H1 leftmost,
and all other Hi to the right of it; this gives a drawing of H that satisfies the
invariant, see Fig. 2. Since m2 ≥ m3 ≥ . . . ≥ mk, the height of this drawing is

h(m) ≤ max{h(m1), h(m2) + 2, . . . , h(mk) + 2} = max{h(m1), h(m2) + 2} (1)

Subgraphs from series compositions. Now let H (with terminals s, t) be
obtained from a series composition of graphs Ha and Hb with terminals s, x and
x, t, respectively. Since we consider maximal SP-graphs, each of Ha and Hb is
either an edge or obtained from a parallel composition. We distinguish cases.

Case (S1): One subgraph, say Hb, is an edge. Then we draw Ha recursively,
extend the drawing of terminal s to the right, place t in the bottom row, and
connect edge (x, t) horizontally. See Fig. 3. The case that Ha is an edge is
symmetric. We have h(m) = h(m − 1) in this case.

Case (S2): Both subgraphs have at least two edges. Assume that m(Hb) ≤
m(Ha); the other case is symmetric. Graph Hb was obtained from a parallel
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Fig. 2. Combining subgraphs in parallel
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Fig. 3. A series composition when one subgraph is an edge

composition of subgraphs, say H1, . . . , Hk such that m(H1) ≥ . . . ≥ m(Hk).
Note that Hk is the edge (x, t), which exists since the SP-graph is maximal.

Let L be an integer; we will discuss later how to choose L. For all i <
min{L, k}, we break subgraph Hi up further. Graph Hi is not an edge (since
i < k and Hk is an edge), and so is obtained in a series composition of two
subgraphs Ha

i and Hb
i with terminals x, yi and yi, t, respectively. See also Fig. 4.

Set mβ
α = m(Hβ

α) for any strings α and β.

.
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Fig. 4. Breaking down subgraph Hb

Recursively draw each of the subgraphs Ha, Ha
i , Hb

i (for i = 1, . . . ,
min{k, L}−1,) and Hi (for i = L, . . . , k−1.) Before we can combine these draw-
ings, we need to release some terminals again (recall Lemma 1). We proceed as
follows:

– The drawing of Ha is unchanged and has height h(ma).
– For i = 1, . . . , min{L, k} − 1, release terminal x in the drawing of Ha

i , and
terminal t in the drawing of Hb

i . The drawings hence have height at most
h(ma

i ) + 1 and h(mb
i) + 1.

– For i = L, . . . , k − 1, release both terminals in the drawing of Hi.
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To explain how we put these drawings together, we distinguish two sub-cases:

Case (S2a): Assume first that k ≤ L, and consider Fig. 5. We place Ha on
the left, followed by Ha

1 , Ha
2 , . . . , Ha

k−1. All these graphs share terminal x, and
it spans the bottom row for Ha

1 , Ha
2 , . . . , Ha

k−1, so this draws x as a horizontal
segment. Now for i = 1, . . . , k − 1, rotate the drawing of Hb

i such that terminal
t spans the bottom row and terminal yi occupies the top left corner. We place
these rotated drawings in order Hb

k−1, H
b
k−2, . . . , H

b
1 ; then t is in the bottom row

and can be connected to x with a horizontal edge.
We increase the heights of these drawings (by inserting rows, if needed) such

that the two representations of yi are in the same row, yi is above the drawing of
yi+1 (for i < k−1), and s is above all yi’s. Then all terminals can be represented
as line segments and the invariant holds.

yk−1

Hb
k−1Ha

k−1

y1

t

s

Ha

x

Hb
1. . .. . .Ha

1

Fig. 5. Combining the subgraphs for a series composition. The case k ≤ L.

Let hi be the height of the drawing of Ha
i and Hb

i together in the final drawing.
Then hk−1 ≤ max{h(ma

k−1) + 1, h(mb
k−1) + 1} ≤ h(mk−1) + 1. For i < k −

1, the height has been increased further to keep yi above yi+1, hence hi ≤
max{h(mi)+1, hi+1+1}. Therefore, y1 is at height h1 ≤ max{h(m1)+1, h(m2)+
2, . . . , h(mk−1) + k − 1}, s is at least one higher, and the total height is

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mk−1) + k} (2)

Case (S2b): Now we study the case k > L, where we treat the graphs
HL, . . . , Hk−1 differently. Place Ha, Ha

1 , . . . , Ha
L−1, H

b
L−1, . . . , H

b
1 exactly as be-

fore. Add rows until HL, . . . , Hk−1 all have the same height, say hd, and place
them below the segment of x. We may have to add some columns to x if it is not
wide enough for the subgraphs. To make the two occurrences of t match up, we
extend the drawings of Hb

L−1, . . . , H
b
1 downwards and draw edge (x, t) vertically.

See Fig. 6.
To obtain a formula for the resulting height, we hence need to add hd − 1 to

the formula of (2) (after replacing k by L in it.) Since hd is the maximum height
among HL, . . . , Hk−1, and mL ≥ . . . ≥ mk, we have hd ≤ h(mL)+ 2 (recall that
both terminals were released for HL, . . . , Hk−1), and therefore

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mL−1) + L}+ h(mL) + 1 (3)

Analysis. Now we show that the above algorithm indeed yields a small area.
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Fig. 6. Combining the subgraphs for a series composition. The case k ≥ L.

Lemma 2. For a suitable choice of L, we have h(m) ≤ 12
√

m.

Proof. This clearly holds for m = 1. For a parallel composition, we have m1 ≥ mi

and hence mi ≤ m/2 for i ≥ 2, so by (1) and m ≥ 2

h(m) ≤ max{h(m1), h(m2) + 2, . . . , h(mk) + 2}
≤ max{h(m), h(m/2) + 2} ≤ max{12

√
m, 12

√
m/2 + 2} ≤ 12

√
m.

In case (S1), we have h(m) = h(ma) ≤ 12
√

ma ≤ 12
√

m. In case (S2), we
assumed ma ≥ mb. Also, mb ≥ 3 (because Ha

1 and Hb
1 have each an edge, and

(x, t) exists), and hence m ≥ 6. We choose L = 3
√

ma + 1.2 Now for case (S2a),
we have by (2)

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mk−1) + k}
≤ max{h(ma), h(m/2) + L} since mi ≤ mb ≤ m/2 and k ≤ L

≤ max{12
√

ma, 12
√

m/2+3
√

ma+
1√
6

√
m} since L = 3

√
ma+1 and m ≥ 6

≤ max{12, (
12√

2
+ 3 +

1√
6
)}√m ≤ 12

√
m

Finally we consider case (S2b). We have m1 ≤ mb ≤ ma and mi ≤ m1, hence
mi ≤ mb/2 ≤ ma/2 for all i ≥ 2. Recall that the height in case (S2b) is by (3)

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mL−1) + L} + h(mL) + 1
≤ max{h(ma), h(ma/2) + L − 2} + h(mL) + 3 ≤ 12

√
ma + 12

√
mL + 3,

where the last inequality holds by induction and because h(ma/2) + L − 2 ≤
12

√
ma

2 + 3
√

ma − 1 ≤ 12
√

ma. But

(
√

ma +
√

mL +
1
4
)2 = ma + mL +

1
16

+ 2
√

ma
√

mL +
1
2
√

ma +
1
2
√

mL

≤ ma + mL +
1
16

√
mamL + 2

√
mamL +

1
2
√

mamL +
1
3
√

mamL

2 Many thanks to Jason Schattman for helping with MAPLE to find small constants.
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by
√

ma ≥ √
3 ≥ 3

2

≤ ma + mL + 3
√

mamL = ma + mL + (L − 1)mL by L = 3
√

ma + 1
≤ ma + mL + m1 + m2 + . . . + mL−1 by mi ≥ mL for i < L

which is at most m. Putting it together, we get h(m) ≤ 12(
√

ma +
√

mL + 1
4 ) ≤

12
√

m as desired. ��
Theorem 1. Any series-parallel graph has a visibility representation with area
O(n3/2).

Proof. By the previous lemma, the height is O(
√

m) = O(
√

n) by m = 2n−3. To
analyze the width, notice that at the most we use one column for each edge. (Each
vertex obtains at least one incident vertical edge in the base case, and hence does
not contribute additional width.) Hence the width is at most m ≤ 2n − 3, and
the total area is O(n3/2). ��
We get better bounds if case (S2b) does not happen, i.e., if the series-parallel
graph has small fan-out.

Theorem 2. Any series-parallel graph with fan-out f has a visibility represen-
tation of area O(fn log n).

Proof. Assume first the graph is maximal. As in Theorem 1 the width is O(n),
so it suffices to show that h(m) ≤ 2 + f log m for a maximal SP-graph with
fanout f . We proceed by induction on the number of edges. In the base case
h(1) = 2 ≤ 2 + f log m. In case of a parallel composition, by (1) we have m2 ≤
m/2 and height

h(m) ≤ max{h(m1), h(m2) + 2} ≤ max{h(m1), h(m/2) + 2}
≤ max{2 + f log m1, 2 + f log(m/2) + 2} ≤ 2 + f log m

since f ≥ 2. For case (S1), the height is h(m) = h(ma) ≤ 2 + f log ma ≤
2 + f log m. In case (S2), we choose L = f , and hence always have k ≤ L and
are in case (S2a). Here, the height is by (2)

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mk−1) + k}
≤ max{h(ma), h(m/2) + f} since mi ≤ m/2 and k ≤ f

≤ max{2 + f log ma, 2 + f log(m/2) + f} ≤ 2 + f log m.

If the graph is not maximal, then it can be made a maximal SP-graph by adding
edges; this adds at most one to the fan-out f and hence the drawing of the
super-graph has area O(fn log n). ��
Note in particular that a series-parallel graph with maximum degree Δ has fan-
out at most Δ, so any series-parallel graph has a flat visibility representation
of area O(Δn log n). Also, any outer-planar graph is an SP-graph with fan-out
f ≤ 2, so this theorem implies our earlier result [3], and in fact yields exactly
the same visibility representation.
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We note here that most algorithms for visibility representations of planar
graphs (e.g. [23, 21]) are uni-directional, i.e., all edges are drawn as vertical line
segments. Our visibility representations use two directions, but since all boxes
of vertices have unit height, they can be made uni-directional at the cost of at
most doubling the height. Details are omitted.

4 Lower Bounds

Series-parallel graphs. Most of the previously given lower bounds for planar
drawings (see e.g. [14,2,19]) rely on an argument that we call the “stacked cycle
argument”, which we briefly review here because we will modify it later. Assume
we have a planar graph G with a fixed planar embedding and outer-face. A set
of disjoint cycles C1, . . . , Ck is called stacked cycles if Ci is outside the region
defined by Ci−1 for all i > 1. The following is well-known:

Fact 1. If G has k stacked cycles, then G needs at least a 2k × 2k-grid in any
planar polyline drawing that reflects the planar embedding and outer-face.

Therefore, to get a bound of Ω(n2) on the area, construct graphs that consist
of n/3 stacked triangles [14], or Ω(n) stacked cycles for some graph classes that
do not allow stacked triangles [19]. The left graph in Fig. 7 is a series-parallel
graph that has n/3 stacked cycles.

Theorem 3. There exists a series-parallel graph that requires a 2
3n × 2

3n-grid
in any polyline drawing that respects the planar embedding and outer-face.

3

4 5

6

7

9

8

1 2

Fig. 7. Two graphs with n/3 stacked cycles

Note that our graph (contrary to the other lower bound graphs cited above)
has many different planar embeddings, and using a different embedding one
can easily construct drawings of it in area O(n). Our algorithm (which changes
the planar embedding) achieves area O(n log n) since the graph has fan-out 2.
Frati [13] showed that another series-parallel graph (consisting of K2,n and a
complete ternary tree) needs Ω(n log n) in any poly-line drawing. Closing the
gap between his lower bound and our upper bound of O(n3/2) remains open.

k-outerplanar graphs. A k-outer-planar graph is defined as follows. Let G be
a graph with a fixed planar embedding. G is called 1-outer-plane if all vertices
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of G are on the outer-face (i.e., if G is outer-planar in this embedding.) G is
called k-outer-plane if the graph that results from removing all vertices from the
outer-face of G is (k − 1)-outer-plane in the induced embedding. A graph G is
called k-outer-planar if it is k-outer-plane in some planar embedding.

Clearly, k-outer-planar graphs generalize the concept of outer-planar graphs,
and hence for small (constant) k are good candidates for o(n2) area. Also, by
definition we cannot use a stacked cycle argument on them (a k-outer-planar
graph has at most k stacked cycles.) Nevertheless, we can show an Ω(n2) lower
bound on the area even for 2-outer-planar graphs.

To show this, we modify the stacked-cycle argument. Let G be a graph with
a fixed planar embedding, and let C1, . . . , Ck be k cycles that are edge-disjoint
and any two cycles have at most one vertex in common. We say that C1, . . . , Ck

are 1-fused stacked cycles if Ci is outside the region defined by Ci−1 except at
the one vertex that they may have in common. See Fig. 8.

6

2

1

3

5

7

4

p = pS

pN

Ck

Γ ′

Fig. 8. A 2-outerplanar graph with (n − 1)/2 1-fused stacked cycles, and adding a
1-fused cycle around a drawing

Lemma 3. Let G be a planar graph with a fixed planar embedding and outer-
face, and assume G has k 1-fused stacked cycles C1, . . . , Ck. Then any poly-line
drawing of G that respects the planar embedding and outer-face has width and
height at least k + 1.

Proof. We proceed by induction on k. Clearly we need width and height 2 to
draw the cycle C1. For k > 1, let G′ be the subgraph formed by the 1-fused
stacked cycles C1, . . . , Ck−1.

Consider an arbitrary poly-line drawing Γ of G, and let Γ ′ be the induced
drawing of G′, which has width and height at least k by induction. Consider
Fig. 8. The drawing of Ck in Γ must stay outside Γ ′, except at the point p
where Ck and Ck−1 have a vertex in common (if any.) Let pN and pS be points
at a vertex or bend in the topmost and bottommost row of Γ ′; by k ≥ 2 they
are distinct. So p �= pN or p �= pS ; assume the former. To go around pN , the
drawing of Ck in Γ must reach a point strictly higher than pN , and hence uses
at least one more row above Γ ′. Similarly one shows that Γ has at least one
more column than Γ ′. ��
Now we give a lower bound for 2-outerplanar graphs. The same graph also has
small pathwidth (defined precisely below.)
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Theorem 4. There exists a 3-connected 2-outer-planar graph of pathwidth 3
that requires an n+1

2 × n+1
2 -grid in any poly-line drawing that reflects the planar

embedding and outer-face.

Proof. (Sketch) Fig. 8 shows a graph that has (n − 1)/2 1-fused stacked cycles
and hence needs an (n + 1)/2 × (n + 1)/2-grid. Clearly it is 2-outerplanar and
has pathwidth 3. ��
Since this graph is 3-connected, no other planar embedding is possible. It is
possible to choose a different outer-face, but at least (n − 1)/4 1-fused stacked
cycles will remain regardless of this choice, and hence an Ω(n2) lower bound
applies to any planar drawing of this graph.

Graphs of small (proper) pathwidth. The same graph can also serve as a
lower-bound example for another restriction of planar graphs, namely, graphs
of bounded treewidth, pathwidth, and proper pathwidth. See for example Bod-
laender’s overview [4] for exact definition of treewidth and applications of these
graph classes. Graphs of treewidth 2 are exactly SP-graphs. Graphs of pathwidth
k are those that have a vertex order v1, . . . , vn such that for any i, at most k ver-
tices in v1, . . . , vi have a neighbour in vi+1, . . . , vn. Graphs of proper pathwidth
k are those that have a vertex order v1, . . . , vn such that for any edge (vi, vj),
we have |j − i| ≤ k. Graphs of proper pathwidth k are a subset of graphs of
pathwidth k, which in turn are a subset of graphs of treewidth k.

The labelling of vertices of the graph in Fig. 8 show that it has pathwidth at
most 3. Many other previously given lower-bound graphs that consist of stacked
cycles (see e.g. [2]) have constant pathwidth, even constant proper pathwidth,
usually equal to the length of the stacked cycles. We give one more example that
also has small maximum degree.

Theorem 5. There exists a 3-connected graph of proper pathwidth 3 with max-
imum degree 4 that requires Ω(n2) area in any poly-line drawing.

Proof. The right graph in Fig. 7 shows an example with proper pathwidth at
most 3 and maximum degree 4, and n/3 stacked cycles, hence needs a 2

3n× 2
3n-

grid in any polyline drawing. ��
Since planar partial 3-trees are also partial k-trees for any k ≥ 3, our lower
bounds holds for all partial k-trees with k ≥ 3, hence destroying the hope that
the linear-area layouts in 3D [10] could be replicated in 2D.
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