Scene Retrieval of Natural Images

  • J. F. Serrano
  • J. H. Sossa
  • C. Avilés
  • R. Barrón
  • G. Olague
  • J. Villegas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


Feature extraction is a key issue in Content Based Image Retrieval (CBIR). In the past, a number of describing features have been proposed in literature for this goal. In this work a feature extraction and classification methodology for the retrieval of natural images is described. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (form the co-occurrence) of a sub-image extracted from the three channels: H, S and I. A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. After performing our experimental results, we have observed that in average image retrieval using images not belonging to the training set is of 80.71% of accuracy. A comparison with two similar works is also presented. We show that our proposal performs better in both cases.


  1. 1.
    Long, F., Zhang, H.J., Feng, D.D.: Fundamentals of Content Image retrieval. In: Feng, D. (ed.) Multimedia Information Retrieval and Management. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    del Bimbo, A.: A Perspective View on Visual Information Retrieval Systems. In: Workshop on Content Based Access of Image and Video Libraries, vol. 21, pp. 108–109. IEEE, Los Alamitos (1998)CrossRefGoogle Scholar
  3. 3.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys 40(2), paper 5 (April 2008)Google Scholar
  4. 4.
    Vogel, J., Schiele, B.: Semantic Modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision 72(2), 133–157 (2007)CrossRefGoogle Scholar
  5. 5.
    Vogel, J., Schiele, B.: Semantic Modelling of Natural Scenes for Content-Based Image Retrieval. Int. J. of CV (2006), doi:10.1007/s11263-006-8614-1Google Scholar
  6. 6.
    Vogel, J., Schwaninger, A., Wallraven, C., Bülthoff, H.H.: Categorization of natural scenes: local vs. global information. In: Proceedings of the Symposium on Applied Perception in Graphics and Visualization (APGV 2006), June 2006, pp. 33–40. ACM Press, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Gonzalez Garcia, A.C.: Image retrieval based on the contents. PhD Thesis. Center for Research in Computing (CIC)-IPN, Mexico DF (September 2007)Google Scholar
  8. 8.
    Presutti, M.: Co-currency Matrix in Multispectral Classification: Tutorial for Educators textural measures. In: The 4th day Educacao em Sensoriamento Remote Ambito not do Mercosul, Sao Leopoldo RS. Brazil, Augest 11-13 (2004)Google Scholar
  9. 9.
    Rui, Y., Huang, Th.S., Chang, Sh.F.: Image Retrieval: Currente techniquies, Promissing Directions, and open Issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Zhang, D., et al.: A survey of Content-Based Image Retrieval with high-level semantics. Pattern Recognition 40, 262–282 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Li, J., Wang, J.Z.: Real-Time Computerized Annotation of Pictures. In: Proceedings of the 14th annual ACM international conference on Multimedia, pp. 911–920 (2006)Google Scholar
  12. 12.
    Hiremath, P.S., Pujari, J.: Content Based Image Retrieval using Color, Texture and Shape features. In: 15th International Conference on Advanced Computing and Communications, pp. 780–784 (2007)Google Scholar
  13. 13.
    Fukunaga, K.: Introduction to statistical Pattern Recognition. Academic Press, New York (1990)zbMATHGoogle Scholar
  14. 14.
    Sumana, I.J., Islam, M.M., Zhang, D., Lu., G.: Content Based Image Retrieval using curvelet transform. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, October 8-10 2008, pp. 11–16 (2008)Google Scholar
  15. 15.
    Vogel, J., Schiele, B.: Performance evaluation and optimization for Content-Based Image Retrieval. Pattern Recognition 39(5), 897–909 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. F. Serrano
    • 1
  • J. H. Sossa
    • 1
  • C. Avilés
    • 2
  • R. Barrón
    • 1
  • G. Olague
    • 3
  • J. Villegas
    • 1
  1. 1.Centro de Investigación en Computación-Instituto Politécnico Nacional (CIC- IPN) UPLM – ZacatencoLindavistaMéxico
  2. 2.Departamento de ElectrónicaUniversidad Autónoma Metropolitana-AzcapotzalcoMéxico
  3. 3.Centro de Investigación Científica y de Educación Superior de Ensenada, BCZona PlayitasMéxico

Personalised recommendations