Advertisement

Graph-Cut versus Belief-Propagation Stereo on Real-World Images

  • Sandino Morales
  • Joachim Penc
  • Tobi Vaudrey
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

This paper deals with a comparison between the performance of graph cuts and belief propagation stereo matching algorithms over long real-world and synthetics sequences. The results following different preprocessing steps as well as the running times are investigated. The usage of long stereo sequences allows us to better understand the behavior of the algorithms and the preprocessing methods, as well as to have a more realistic evaluation of the algorithms in the context of a vision-based Driver Assistance System (DAS).

Keywords

Root Mean Square Stereo Pair Preprocessing Method Driver Assistance System Virtual View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  2. 2.
    .enpeda.. image sequence analysis test site (EISATS), http://www.mi.auckland.ac.nz/EISATS/
  3. 3.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Computer Vision 70, 41–54 (2006)CrossRefGoogle Scholar
  4. 4.
    Guan, S., Klette, R.: Belief-propagation on edge images for stereo analysis of image sequences. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Guan, S., Klette, R., Woo, Y.W.: Belief propagation for stereo analysis of night-vision sequences. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 932–943. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Analysis Machine Intelligence 26, 65–81 (2004)Google Scholar
  8. 8.
    Kolmogorov, V., Zabih, R.: Graph cut algorithms for binocular stereo with occlusions. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 423–438 (2006)Google Scholar
  9. 9.
    Morales, S., Vaudrey, T., Klette, R.: An in depth robustness evaluation of stereo algorithms on long stereo sequences. In: Proc. IEEE Intelligent Vehicles Symp., pp. 347–352 (2009)Google Scholar
  10. 10.
    Morales, S., Klette, R.: A Third Eye for Performance Evaluation is Stereo Sequence Analysis. In:Proc. CAIP (to appear, 2009)Google Scholar
  11. 11.
    Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans. Pattern Analysis Machine Intelligence 7, 139–154 (1985)CrossRefGoogle Scholar
  12. 12.
    Al-Sarraf, A., Vaudrey, T., Klette, R., Woo, Y.W.: An approach for evaluating robustness of edge operators on real-world driving scenes. In: IEEE Conf. Proc. IVCNZ 2008, Digital Object Identifier 10.1109/IVCNZ.2008.4762096 (2008)Google Scholar
  13. 13.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Computer Vision 47, 7–42 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: Proc. Int. Conf. Computer Vision, vol. 2, pp. 781–788 (1999)Google Scholar
  15. 15.
    Tappen, M., Freeman, W.: Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: Proc.9th IEEE ICCV, vol. 2, pp. 900–906 (2003)Google Scholar
  16. 16.
    Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behavior on synthetic and real-world stereo sequences. In: Proc. Int. Conf. Image Vision Computing, New Zealand. IEEE Xplore, Los Alamitos (2008)Google Scholar
  17. 17.
    Vaudrey, T., Klette, R.: Residual images remove illumination artifacts for correspondence algorithms!. In: Proc. Pattern Recognition - DAGM (to appear, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sandino Morales
    • 1
  • Joachim Penc
    • 2
  • Tobi Vaudrey
    • 1
  • Reinhard Klette
    • 1
  1. 1.The .enpeda.. ProjectThe University of AucklandNew Zealand
  2. 2.Informatics InstituteGoethe UniversityFrankfurtGermany

Personalised recommendations