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Abstract. This paper deals with a comparison between the performance of graph
cuts and belief propagation stereo matching algorithms over long real-world and
synthetics sequences. The results following different preprocessing steps as well
as the running times are investigated. The usage of long stereo sequences allows
us to better understand the behavior of the algorithms and the preprocessing
methods, as well as to have a more realistic evaluation of the algorithms in the
context of a vision-based Driver Assistance System (DAS).

1 Introduction

Stereo algorithms aim to reconstruct 3D information out of (at least) a pair of 2D
images. To achieve this, corresponding pixels in the different views have to be matched
to estimate the disparity between them. There exist many approaches to solve this
matching problem, most of them too slow and/or inaccurate. In this paper we compare
a graph cut method – which produces in [1,8,13] very good results but is quite slow
– and belief propagation stereo which has proven in [5,13] to produce good results
in reasonable running time. Both algorithms apply global 2D optimization by using
information from potentially unbounded 2D neighborhoods for pixel matching, as
opposed to, for example, local techniques (e.g., correlation-based), or semi-global
scan-line optimization techniques (e.g., dynamic programming, semi-global matching).
Furthermore, we are interested in analyzing various preprocessing methods (as
suggested in [5,17]) in order to minimize common issues of real-world imaginary. We
are in particular interested in eliminating a negative influence of brightness artifacts,
which cause major issues for matching algorithms. This effect on stereo reconstruction
quality is often neglected when looking at indoor scenes, with good lighting and
cameras. As stated in [9], this kind of noise has a significant influence on the output
of stereo algorithms. Following [5], we use the simple Sobel edge detector in order
to improve the outcome of the algorithms. We also use residual images (i.e., images
resulting from subtracting a smoothed version from an original image) that have proved
to be of use for overcoming brightness issues, see [17]. The processing time of the
algorithms it is also investigated, as this is of importance for most applications, such as
vision-based driver assistance systems (DAS) and mobile robotics.

Performances of these two algorithms (BP and GC) have been compared in the
past, but only for engineered or synthetic images; see, for example, [15]. Our study
is focused on a comparison of the performance of both algorithms on long real-world
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image sequences; but we also investigate the performance of the algorithms over a
long synthetic sequence (for behavior with respect to some systematic changes in this
synthetic sequence, but not for ranking of methods; indoor or synthetic data do have
limited relevance for the actual ranking of methods for real-world DAS). Those long test
sequences allow us to better understand the behavior of the algorithms in general, and
in particular the effects of previously proposed preprocessing methods. To overcome
the lack of ground truth we use a sequence recorded with three calibrated cameras; thus
we are able to use prediction error analysis as a quality measure [14]; we use the same
approach to evaluate the performance of the algorithms on the chosen long synthetic
sequence.

This paper is structured as follows: Section 2 specifies the implementations used in
this paper of the graph cut and belief propagation algorithms; it also recalls prediction
error analysis and informs about the chosen preprocessing methods. Section 3 presents
and discusses the obtained results. Conclusions are stated in Section 4.

2 Approach for Evaluation

The experiments have been performed using a very recent graph cut implementation
from V. Kolmogorov and R. Zabih1 which can detect occlusions quite well;
and a modified coarse-to-fine belief propagation algorithm of Felzenszwalb and
Huttenlocher2 as implemented for [5], focusing on more reliable (and time-efficient)
matching, therefore using max-product, 4-adjacency, truncated quadratic cost function,
red-black speed-up, and coarse-to-fine processing. Both algorithms were implemented
under a C++ platform. For a detail discussion on belief propagation and graph cut
algorithms see [7] and [3], respectively.

The outline of our experiments is as follows. We evaluate both algorithms over
a synthetic and a real-world sequence, and compare results and computational time.
Furthermore, we use two different preprocessing methods in order to improve the
results. For the graph cut algorithm we also analyze the effect of different number of
iterations (between 1 and 3). The algorithms were tested on an Intel Core2 vPro at 3.0
GHz with 4 GB memory using Windows Vista as the operating system.

Data Set. The POV-ray synthetic sequence (100 stereo pairs) with available ground
truth is from Set 2 on [2], as introduced in [16]. The real-world sequence of 123 frames
(recorded with three calibrated cameras using the research vehicle of the .enpeda..
project, which is the ego-vehicle in our experiments) is from Set 5 on [2], as introduced
in [10], and it is a fairly representative example of a daylight (no rain) outdoor sequence,
containing reflections and large differences in brightness between subsequent stereo
pairs, or between the left and right image of the stereo pair. The use of long sequences
facilitates the recognition of circumstances that may affect the performance of an
algorithm, as well as it helps to understand the robustness of an algorithms with

1 See http://www.adastral.ucl.ac.uk/vladkolm/software/
match-v3.3.src.tar.gz

2 See http://people.cs.uchicago.edu/˜pff/bp for original sources.

http://www.adastral.ucl.ac.uk/vladkolm/software/match-v3.3.src.tar.gz
http://www.adastral.ucl.ac.uk/vladkolm/software/match-v3.3.src.tar.gz
http://people.cs.uchicago.edu/~pff/bp
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Fig. 1. Data sets. Synthetic sequence (upper row), form left to right: Ground truth disparity (dark
= far, light = close, white = occlusion), left and right views of frame 43. Real-world sequence
(lower row): from left to right, view of the left, center, and right cameras of frame 37.

respect to changes in circumstances (e.g., brightness differences, lighting artifacts, close
objects, night, or rain). See Figure 1 for examples of the used data sets.

Preprocessing Methods. A vision-based DAS has to deal with input data that are
recorded under uncontrolled environments. Among all the adverse conditions faced by
outdoor image grabbing, brightness differences between the images of a stereo pair
have a particularly negative influence on the output of the stereo algorithms [9]. In
order to over come this almost unavoidable issue, following [5], we preprocess our
sequences using a 3×3 Sobel edge operator (with a processing time of 0.06 s per stereo
pair) to create an edge sequence. In [12], the simple Sobel operator proved to be the
most effective edge-operator within a group of edge operators, tested for improving
correspondence analysis on real-world data.

In [17], the authors used residual images to remove the illumination differences
between correspondence images. We analyze whether there is an improvement in the
output of the belief propagation and graph cut stereo algorithms using residual images
as source data. Given an image I , we consider it as a composition I(p) = s(p) + r(p),
for pixel position p ∈ Ω (the image domain), where s = S(I) denotes the smooth
component and r = I −s the residual one. We use the straightforward iteration scheme
to obtain the residual component of the image I:

s(0) = I, s(n+1) = S(s(n)), r(n+1) = I − s(n+1), for n ≥ 0.

In our experiments we use a 3×3 mean filter to generate the smooth component and
n = 40 iterations (with a computational time of 0.07 s per stereo pair; see [17] for a
reasoning for selecting mean filtering and n = 40). We refer to the sequence formed
by residual images as residual sequence. See Figure 2 for a sample stereo pair of the
real-world residual sequence and the edge synthetic sequence.
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Fig. 2. Examples of the output of the preprocessing methods. Left: Residual stereo pair frame 37
of the real-world sequence. Right: Sobel edge stereo pair frame 43 of the synthetic sequence.

Evaluation approach. To objectively evaluate the performance of the algorithms over
the real-world sequence (with non-available ground truth), the output of the algorithms
is analyzed using the so-called prediction error [14]. This technique requires at least
three images of the same scene: two of them are used to calculate a disparity map,
while the third one is used for evaluation purposes. For consistency, the evaluation
of the synthetic sequence is also performed with the prediction error. The third or
virtual image used to evaluate the results is generated using the same pose of the
left-most camera of the three-camera set-up in our research vehicle (while recording
the real-world sequences) and the available ground truth.

We follow the method described in [10], where the (rectified) images recorded by
the center and right-most camera are used as the input data of the stereo algorithms.
The resultant disparity map and the center image are used to generate (by geometrical
means) a virtual image as it would be recorded by the left-most camera. This virtual
image is then compared with the actual left-most image in the following way: for each
frame t of the given trinocular sequence, let Ωt be the set of all pixels in the left image
Il, such that their source scene point is also visible in the center and right images. Let
(x, y) be the coordinates of a pixel in Ωt with intensity Il(x, y). The method above
assigns to the pixel with coordinates (x, y) in the virtual image Iv an intensity value
Iv(x, y) (defined by the intensity of a certain pixel in the center image). Thus, we are
able to compute the root mean squared (RMS) error between the virtual and the left
image as follows:

R(t) =
1

|Ωt| (
∑

(x,y)∈Ωt

[Il(x, y) − Iv(x, y)]2)1/2

where |Ωt| denotes the cardinality of Ωt. A high RMS means there is more error.
The normalized cross correlation (NCC) is also used to compare left and virtual

image, applying the following:

N(t) =
1

|Ωt|
∑

(x,y)∈Ωt

[Il(x, y) − μr][Iv(x, y) − μv]
σrσr

μl and μv denote the means, and σl and σv the standard deviations of Il and Iv ,
respectively. A low NCC means there is more error.

Since we are dealing with a image sequence, the results can be graphed over time
(see Figure 5 for an example). To summaries the large dataset, we compute the mean
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and the zero mean standard deviation (ZMSD - the standard deviation assuming a mean
of zero) of the results in a sequence.

3 Results and Discussion

Synthetic Sequence. According to [1], GC only needs a few iterations to obtain
acceptable results. Thus we test the algorithm with only one or three iterations over
the three sequences. For all the sequences, differences in results for either one or three
iterations are almost imperceivable, visually and statistically. The RMS metric reports
a slight improvement using three iterations, and the NCC shows that the results are a
bit better using just one (see Table 1). The computational time, on average, was 135.3
s and 386.7 s for one and three iterations, respectively. The latter result discourages the
use of more than one iteration for this synthetic sequence.

Differences in GC results between the preprocessed sequences and the original ones
are not consistent either. On one hand, NCC reports that the best performance is with
the original sequence. On the other hand, the best RMS results are obtained with the
edge sequence. Visually, NCC seems to report more accurately the behavior of the
algorithm, as the results seems to suffer degradation with the preprocessed sequences
(see Figure 3).

BP shows a different behavior. With RMS, the best overall results were obtained with
the original sequence, while with NCC this sequence showed the worst performance.
Again, by visual inspection, NCC seems to reflect better the performance of the
algorithms, as the results get better (visually) using any of the discussed preprocessing
methods. The average computational time was 98.5 s (parameters used: ITER = 7,
LEVELS = 6, DISCK = 50, DATAK = 35, λ = 0.07).

Summarizing (see BP values in Table 1), the metrics show contradictory results
when using preprocessing methods. Visually, NCC seems to be the more appropriate
metric; following the NCC results, GC has a better performance than BP on the original
synthetic sequence, with one or three iterations; but, with preprocessing, BP produces
results are as good as GC. See Figure 3.

Real-world Sequence. With GC, all the sequences reported worse RMS results with
three iterations compared to one! NCC reports basically no change except for the edge
sequence, for which the results are slightly worse for three iterations (see Table 2).

Table 1. Summarizing NCC and RMS results for the synthetic sequence

Evaluation GC - 1 Iteration GC - 3 Iterations BP
Approach Sequence Mean ZMSD Mean ZMSD Mean ZMSD

NCC
Original 0.76 0.76 0.75 0.75 0.68 0.68
Residual 0.75 0.75 0.74 0.74 0.76 0.76
Sobel 0.73 0.73 0.72 0.72 0.73 0.73

RMS
Sobel 36.04 36.07 36.02 36.04 36.02 36.04
Residual 36.68 36.70 36.65 36.67 36.51 36.54
Original 36.82 36.84 36.66 36.68 35.86 35.88
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Table 2. Summarizing NCC and RMS results for the real world sequence

Evaluation GC - 1 Iteration GC - 3 Iterations BP
Approach Sequence Mean ZMSD Mean ZMSD Mean ZMSD

NCC
Residual 0.66 0.67 0.66 0.67 0.68 0.69
Sobel 0.66 0.67 0.65 0.65 0.65 0.66
Original 0.64 0.65 0.64 0.65 0.65 0.66

RMS
Residual 33.48 34.06 33.50 34.08 32.91 33.48
Sobel 34.03 34.62 34.19 34.78 33.00 33.58
Original 35.34 35.94 35.49 36.10 34.04 34.57

Fig. 3. Examples of the generated virtual view. Left to right: Original, edge map and residual
sequences. Upper row: GC with one iteration. Lower row: BP.

In contrast, the preprocessing methods have a positive influence on the outcome of
GC, the residual sequence having the best performance (no matter whether one or
three iterations, and for both metrics). The mean computational time was 178.64 s and
390.72s for one and three iterations, respectively, per stereo pair. This result discourages
the use of more than one iteration.

BP shows here a similar behavior as GC: the results improved with both
preprocessing methods (with respect to both metrics), the residual sequence having the
best results. The average NCC does not report any improvement with the edge sequence
(when comparing with the original sequence); however, visually, the improvement is
obvious when the difference in brightness is large between both images in an input
stereo. The parameters used with the real world sequence were as follows: LEVELS =
6, DISCK = 500, DATAK = 100, λ = 0.3, with an average computation time of
122.44 s per stereo pair of images.

Table 2 illustrates that BP outperforms GC in the overall results (as well as in
computational time) even when comparing the best GC result (one iteration over
the residual sequence) and the worst of BP (original sequence). Both algorithms
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Fig. 4. Examples of the generated virtual view. Left to right: Residual, edge map and original
sequences. Upper row: GC with 1 iteration. Lower row: BP.

Fig. 5. NCC evaluation for the real-world sequence. Comparison shown between the original and
the residual sequence. Left: GC with one iteration. Right: BP.

improve their results using preprocessed sequences, particularly, when the differences
in brightness between both images in a stereo input pair are large. Figure 4 shows the
calculated virtual views for frame #47 for the original (right) and the preprocessed
sequences (left and center); the improvement can be detected visually. It is also
interesting to note that there is a minimal (or no) improvement with the preprocessing
of the original sequence when differences in brightness are only minor, meaning, that
with fairly good balanced images, there would be no need of preprocessing.

Summary. The difference between the computational time between one and three
iterations of GC, and the almost null benefit (or even a degradation in the obtained)
results, discourages the use of more than one iteration, for both the real-world and
the synthetic sequences (and its respective modifications). The preprocessing methods
reported better results for both algorithms (except for GC when the synthetic sequence
was evaluated), the residual image method having the best performance, see Figure 5.
From Table 1, GC outperforms BP over the original synthetic sequence. However,
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BP had a better performance over the original real-world sequence, showing that it is
misleading to evaluate over synthetic sequences when ranking stereo algorithms. This
also tells us that more research needs to be done for studying the performance of stereo
algorithms different circumstances (night, rain, etc.). For example, in a more recent
comparison, GC has shown a better performance on sequences captured in the night, or
when objects appear close to the ego-vehicle.

Note that the metrics reported different rankings when evaluating the synthetic
sequence, NCC being the one that seems to confirm what can be concluded by visual
inspection. This behavior (inconsistency in metrics) was not expected in images that
have been recorded under perfect conditions. However, RMS is certainly a ‘very
accurate’ measure, ‘asking for to much’, and seems to be misleading in evaluations.

4 Conclusions

In this paper we compare the performance of a belief propagation stereo algorithm with
a graph cut stereo implementation, using two long sequences (real-world and synthetic)
and two different preprocessing methods. We also tested the influence of the number
of iterations for the GC algorithm. The different rankings obtained by the algorithms
on either the real-world or the synthetic sequence support the usage of a wide class
of data sets for testing the performance of the algorithms, to avoid some bias. The
preprocessing methods proved to be a good option when dealing with real world images,
as the results improved for both algorithms. For the synthetic sequence the metrics do
not show consistent results, and when some improvement was detected, then it was only
fairly minor. This is as expected, as there is no need to improve ‘perfect’ (good contrast
and grey value distribution) images. We also noticed that there is no need to use more
than one iteration with GC; if there was an improvement, it was almost imperceivable,
statistically and visually. On the other hand, the difference in computational time is
considerably large.

Future work may include the investigation of more metrics and preprocessing
methods, as well as the usage of data sets with other adverse conditions such as rain,
night time, and so forth.

References

1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Analysis Machine Intelligence 23, 1222–1239 (2001)

2. .enpeda.. image sequence analysis test site (EISATS),
http://www.mi.auckland.ac.nz/EISATS/

3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J.
Computer Vision 70, 41–54 (2006)

4. Guan, S., Klette, R.: Belief-propagation on edge images for stereo analysis of image
sequences. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 291–302.
Springer, Heidelberg (2008)

5. Guan, S., Klette, R., Woo, Y.W.: Belief propagation for stereo analysis of night-vision
sequences. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp.
932–943. Springer, Heidelberg (2009)

http://www.mi.auckland.ac.nz/EISATS/


740 S. Morales et al.

6. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96.
Springer, Heidelberg (2002)

7. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE
Trans. Pattern Analysis Machine Intelligence 26, 65–81 (2004)

8. Kolmogorov, V., Zabih, R.: Graph cut algorithms for binocular stereo with occlusions. In:
Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer
Vision, pp. 423–438 (2006)

9. Morales, S., Vaudrey, T., Klette, R.: An in depth robustness evaluation of stereo algorithms
on long stereo sequences. In: Proc. IEEE Intelligent Vehicles Symp., pp. 347–352 (2009)

10. Morales, S., Klette, R.: A Third Eye for Performance Evaluation is Stereo Sequence
Analysis. In:Proc. CAIP (to appear, 2009)

11. Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search using dynamic programming.
IEEE Trans. Pattern Analysis Machine Intelligence 7, 139–154 (1985)

12. Al-Sarraf, A., Vaudrey, T., Klette, R., Woo, Y.W.: An approach for evaluating robustness
of edge operators on real-world driving scenes. In: IEEE Conf. Proc. IVCNZ 2008, Digital
Object Identifier 10.1109/IVCNZ.2008.4762096 (2008)

13. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Computer Vision 47, 7–42 (2002)

14. Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: Proc. Int. Conf.
Computer Vision, vol. 2, pp. 781–788 (1999)

15. Tappen, M., Freeman, W.: Comparison of graph cuts with belief propagation for stereo, using
identical MRF parameters. In: Proc.9th IEEE ICCV, vol. 2, pp. 900–906 (2003)

16. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion
behavior on synthetic and real-world stereo sequences. In: Proc. Int. Conf. Image Vision
Computing, New Zealand. IEEE Xplore, Los Alamitos (2008)

17. Vaudrey, T., Klette, R.: Residual images remove illumination artifacts for correspondence
algorithms!. In: Proc. Pattern Recognition - DAGM (to appear, 2009)


	Graph-Cut versus Belief-Propagation Stereoon Real-World Images
	Introduction
	Approach for Evaluation
	Results and Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




