Advertisement

BR: A New Method for Computing All Typical Testors

  • Alexsey Lias-Rodríguez
  • Aurora Pons-Porrata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

Typical testors are very useful in Pattern Recognition, especially for Feature Selection problems. The complexity of computing all typical testors of a training matrix has an exponential growth with respect to the number of features. Several methods that speed up the calculation of the set of all typical testors have been developed, but nowadays, there are still problems where this set is impossible to find. With this aim, a new external scale algorithm BR is proposed. The experimental results demonstrate that this method clearly outperforms the two best algorithms reported in the literature.

Keywords

typical testors feature selection 

References

  1. 1.
    Martínez-Trinidad, J.F., Guzmán-Arenas, A.: The Logical Combinatorial approach to Pattern Recognition: an overview through selected Works. Pattern Recognition 34(4), 741–751 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Lazo-Cortés, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of concept testor. Pattern Recognition 34(4), 753–762 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ortiz-Posadas, M.R., Martínez-Trinidad, J.F., Shulcloper, J.R.: A new approach to diferential diagnosis of diseases. Int. J. Biomed. Compu. 40(3), 179–185 (1996)CrossRefGoogle Scholar
  4. 4.
    De la Vega-Doria, L.A., Carrasco-Ochoa, J.A., Shulcloper, J.R.: Fuzzy KORA-W algorithm. In: 6th European Congress on Intelligent Techniques and Soft Computer, Aachen, Germany, pp. 1190–1194 (1998)Google Scholar
  5. 5.
    Pons-Porrata, A., Gil-García, R., Berlanga-Llavori, R.: Using Typical Testors for Feature Selection in Text Categorization. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 643–652. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Pons-Porrata, A., Ruiz-Shulcloper, J., Berlanga-Llavori, R.: A Method for the Automatic Summarization of Topic-Based Clusters of Documents. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 596–603. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: a New Algorithm for Computing Typical Testors. Revista Ciencias Matemáticas 21(1), 85–95 (2003)MathSciNetGoogle Scholar
  8. 8.
    Sánchez Díaz, G., Lazo Cortés, M.: CT-EXT: An Algorithm for Computing Typical Testor set. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 506–514. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexsey Lias-Rodríguez
    • 1
  • Aurora Pons-Porrata
    • 2
  1. 1.Computer Science Department 
  2. 2.Center for Pattern Recognition and Data MiningUniversidad de OrienteSantiago de CubaCuba

Personalised recommendations