
E. Bayro-Corrochano and J.-O. Eklundh (Eds.): CIARP 2009, LNCS 5856, pp. 433–440, 2009.
© Springer-Verlag Berlin Heidelberg 2009

BR: A New Method for Computing All Typical Testors

Alexsey Lias-Rodríguez1 and Aurora Pons-Porrata2

1 Computer Science Department
lias@csd.uo.edu.cu

2 Center for Pattern Recognition and Data Mining
Universidad de Oriente, Santiago de Cuba, Cuba

aurora@cerpamid.co.cu

Abstract. Typical testors are very useful in Pattern Recognition, especially for
Feature Selection problems. The complexity of computing all typical testors of
a training matrix has an exponential growth with respect to the number of fea-
tures. Several methods that speed up the calculation of the set of all typical tes-
tors have been developed, but nowadays, there are still problems where this set
is impossible to find. With this aim, a new external scale algorithm BR is pro-
posed. The experimental results demonstrate that this method clearly outper-
forms the two best algorithms reported in the literature.

Keywords: typical testors, feature selection.

1 Introduction

One of the problems in Pattern Recognition is Feature Selection, which consists on
finding the features that provide relevant information in the classification process. In
the Logical Combinatorial Pattern Recognition [1] feature selection is commonly
carried out by using Testor Theory [2]. In this theory, a testor is defined as a set of
features that distinguishes the objects of different classes. A testor is called irreducible
(typical) if none of its proper subsets is a testor. When we refer to typical testors (TT),
we restrict us to typical Zhuravlev’s testors, where classes are crisp and disjoint sets,
the comparison criteria for features are Boolean and the similarity measure assumes
two objects as different if they are so in at least one of the features.

Typical testors have been widely used to evaluate the feature relevance [3] and as
support sets in classification algorithms [4]. In Text Mining, they have also been used
for text categorization [5] and document summarization [6]. Several algorithms have
been developed to calculate the typical testors. They can be classified according to its
computational strategy into two categories: external and internal scale algorithms. The
first perform the TT calculation by generating elements of the power set of features in
a predefined order, but trying to avoid the analysis of irrelevant subsets. The second
ones explore the internal structure of the training matrix and find conditions that guar-
antee the testor property. In this paper, we focus on the first strategy.

The complexity of computing all typical testors has an exponential growth with re-
spect to the number of features. Methodologies that speed up the calculation of typical
testors have been developed, but nowadays, there are still problems where the set of

434 A. Lias-Rodríguez and A. Pons-Porrata

all typical testors is impossible to find. Therefore, it is very important to develop
better algorithms for obtaining typical testors. The external scale methods LEX [7]
and CT-EXT [8] are reported to be the most efficient ones.

With this aim, we propose BR, a new external scale method that avoids the analysis
of a greater number of irrelevant subsets and efficiently verifies the testor property by
profiting from the computer bit operations. The method name is due to these Binary
operations and its Recursive nature. The experimental results demonstrate that this
method clearly outperforms the two best algorithms reported in the literature [8].

2 Basic Concepts

Before presenting our method, we review the main definitions of the Testor Theory
and we define the basic concepts of this method.

Let TM be a training matrix containing m objects described in terms of n features
 ℜ={X1,…,Xn} and distributed into r classes {C1,…,Cr}. Each feature Xi takes values
in a set Di, i=1,…,n. A comparison criterion of dissimilarity ψi : Di x Di → {0,1} is
associated to each Xi (0=similar, 1=dissimilar). Applying these comparison criteria for
all possible pairs of objects belonging to different classes in TM, a Boolean dissimi-
larity matrix, denoted by DM, is built. Notice that the number of rows in DM is

∑ ∑
−

= +=
=′

1

1 1

r

i

r

ij
ji CCm , where |Ci| denotes the number of objects in the class Ci.

Let p and q be two rows of DM. p is a subrow of q if in all columns where p has 1, q
has also it. A row p of DM is called basic if no row in DM is a subrow of p. The subma-
trix of DM containing all its basic rows (without repetitions) is called a basic matrix
(BM). Then, a testor is a subset of features τ={Xi1,...,Xis} of TM for which a whole row
of zeros does not appear in the remaining submatrix of BM, after eliminating all col-
umns corresponding to the features in ℜ\τ. τ is a typical testor if there is no proper sub-
set of τ that meets the testor condition [2]. Commonly, algorithms used for computing
typical testors make use of BM instead of DM due to the substantial reduction of rows.

Let (a1,…,au) be a binary u-tuple of elements, ai∈{0,1}, i=1,…,u. We call cardinal
of a binary u-tuple to the number of its elements (i.e., u). The column corresponding
to a feature X in BM is a binary u-tuple, whose cardinal is the number of rows in BM.
We will denote this u-tuple by cX. We also define logical operations on binary u-
tuples as follows:

(a1, a2, …, au) ∨ (e1, e2, …, eu) = (a1 ∨ e1, a2 ∨ e2, …, au ∨ eu)
(a1, a2, …, au) ∧ (e1, e2, …, eu) = (a1 ∧ e1, a2 ∧ e2, …, au ∧ eu)
¬(a1, a2, …, au) = (¬a1, ¬a2, …, ¬au)
(a1, a2, …, au) ⊗ (e1, e2, …, eu) = (a1 ⊗ e1, a2 ⊗ e2, …, au ⊗ eu), where ⊗ denotes

the XOR operation.
 (1,…,1) and (0,…,0) represent binary u-tuples in which all elements are one and

zero, respectively.
The notation [X1,…,Xs], Xi∈ℜ, is used to represent an ordered list of features and

last([X1,…,Xs]) denotes the last element in the list, i.e. Xs. A list does not contain fea-
tures is denoted as []. We call length of a list l, denoted as |l|, to the number of its
features. All basic operations of the set theory (difference, intersection, subset or

 BR: A New Method for Computing All Typical Testors 435

sublist, etc.) can be defined on ordered lists of features in a similar way. With the
symbol + we denote the concatenation between ordered lists of features.

Let l be an ordered list of features. The notation [l] represents a unitary list com-
posed by the list l. Hereafter, by list we will understand an ordered list.

Definition 1. Let l = [X1,…,Xs] be a feature list. We call acceptance mask of l, de-
noted as aml, to the binary u-tuple in which the ith element is 1 if the ith row in BM
has at least a 1 in the columns corresponding to the features of l and it is 0 otherwise.

Definition 2. Let l = [X1,…,Xs] be a feature list. We call compatibility mask of l, de-
noted as cml, to the binary u-tuple in which the ith element is 1 if the ith row in BM
has an only 1 in the columns corresponding to the features of l and it is 0 otherwise.

Notice that the cardinal of both aml and cml is the number of rows in BM.

Example 1. Let l1 = [X1, X2], l2 = [X5,X6,X7,X8,X9] and l3 = [X1, X2, X8] be feature lists
of a basic matrix BM. Its acceptance and compatibility masks are the following:

)1,1,0,1,0(

)0,0,0,1,1(

)1,0,0,1,1(

)1,1,0,1,1(

)1,1,1,1,1(

)1,0,0,1,1(

100010001

110010100

101111000

000100010

010000001

3

2

1

3

2

1987654321

=
=
=
=
=
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

l

l

l

l

l

l

cm

cm

cm

am

am

amXXXXXXXXX

BM

Proposition 1. A feature list l = [X1,…,Xs] is a testor if and only if aml = (1,…,1).

Definition 3. Let l = [X1,…,Xs] be a feature list and X∈ℜ. A row p in BM is a typical
row of X with respect to l if it has a 1 in the column corresponding to X and zero in all
the columns corresponding to the features in l \ [X].

Notice that, by typical testor definition, a feature list l is a typical testor if l is a testor
and satisfies the typicity property, i.e. for every feature X∈l there is at least a typical
row of X with respect to l.

Proposition 2. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. The ac-
ceptance mask of the list l + [X] is calculated as follows: aml+[X] = aml ∨ cX.

Proposition 3. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. The
compatibility mask of the list l + [X] is calculated as follows:

cml+[X] = ((cml ⊗ cX) ∧ cml) ∨ (¬aml ∧ cX)

Notice that propositions 2 and 3 allow the updating of acceptance and compatibility
masks, respectively when a new feature is added to a feature list.

Proposition 4. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. If at least
one of the following conditions is satisfied:

1. aml+[X] = aml
2. ∃ Xi ∈ l such that cml+[X] ∧ cXi = (0,…,0)

Then, X does not form a typical testor with l. In this case, we will say that X is exclu-
sive with l.

The condition 1 means that X has no typical rows with respect to l and the second one
indicates that Xi loses all its typical rows due to X.

436 A. Lias-Rodríguez and A. Pons-Porrata

Notice that X6 is exclusive with l1 in the Example 1, since X2 holds that cml1+[X6] ∧

cX2 = (1,0,1,0,1)∧(0,1,0,0,0) = (0,0,0,0,0). Notice also that X8 is non-exclusive with l1,

because aml1+[X8] ≠aml1 (l3=l1+[X8]), cml3∧cX1= (0,0,0,0,1) and cml3 ∧cX2 = (0,1,0,0,0).

Proposition 5. Let l = [X1,…,Xs] be a feature list and X ∉ l a feature of BM. l + [X] is
a typical testor if and only if X is non-exclusive with l and aml+[X] = (1,…,1).

The first condition means that all features of l+[X] have at least a typical row with
respect to l+[X]. The second one guarantees that l+[X] is a testor, by proposition 1.

Definition 4. Let l = [X1,…,Xs] be a feature list, p an integer such that 1≤ p≤ s+1 and

X∉l a feature of BM. We call substitution of X in l according to p, denoted as
subst(l,X,p), to the list l’= [X1,…,Xp-1,X]. If l = [] then subst(l,X,1) = [X].

Notice that if p = s+1, subst(l,X,p) is the list l+[X].

Definition 5. Let l=[Xi1,…,Xip] and l’=[Xj1,…,Xjq] be feature lists such that l∩l’=[].
We call non-exclusive list of l with respect to l’, denoted as nonExcl(l,l’), to the list
composed by the features Xik∈l such that Xik is non-exclusive with l’ and l’ + [Xik] is
not a typical testor.

For instance, in the basic matrix of Example 1, nonExcl(l2, l1) = [X7,X8]. Notice that X5
and X9 are non-exclusive with l1, but [X1, X2, X5] and [X1, X2, X9] are typical testors.

Definition 6. Let l=[Xi1,…,Xip] and l’=[Xj1,…,Xjq] be feature lists such that l∩l’=[].
We call typical list of l with respect to l’, denoted as TypL(l,l’) to the list composed by
the lists l’ + [Xik] such that Xik∈l and l’ + [Xik] is a typical testor.
For instance, in the basic matrix of Example 1, TypL(l2,l1) = [[X1,X2,X5],[X1,X2,X9]].

3 BR Method

The proposed method firstly rearranges the rows and columns of BM in order to reduce
the search space of typical testors. The row with the minimum number of 1’s and the
maximum number of 1’s in the columns of BM where it has a 1 is put as the first row
(see Steps 1a and 1b). In the Example 1, the two first rows have two 1’s, but the first
row stays there, since it has four 1’s in the columns where it has a 1 (X1, X8). The rear-
rangement of columns (see Step 1c) allows the algorithm finishes as soon as possible,
i.e., when the feature to be analyzed has a zero in the first row of BM. Notice that all
possible combinations of the remaining features will not be testors. The rearrangement
of columns also attempts to reduce the likelihood of the features to be analyzed being
non-exclusive with a feature list, and therefore, to minimize the length of the feature
lists that must be examined.

The underlying idea of BR method is firstly to generate feature lists that satisfy the
typicity property and secondly to verify the testor condition. Like LEX and CT-EXT
algorithms, our method explores the power set of features starting from the first fea-
ture in BM and generates candidate feature lists to be typical testors. Once a candidate
feature list has been generated, the typicity and testor properties are verified by using
propositions 1, 4 and 5. Notice that these propositions are based on acceptance and
compatibility masks.

 BR: A New Method for Computing All Typical Testors 437

Given a candidate feature list L, BR method builds the list LP composed by the fea-
tures Xi that are non-exclusive and do not form a typical testor with L. It means that
L+[Xi] needs more features to form a typical testor. Unlike previous algorithms, which
attempt to find these features in BM, our method restricts the search to the features in
LP. This fact is based on the following proposition:

Proposition 6. Let l=[X1,…,Xs] be a feature list and X∉l a feature of BM. If X is ex-

clusive with l, then it will also be exclusive with any list l’, such that l⊆l’ and X∉l’.

Notice that the features Xi that form a typical testor with L are not included in LP. In
this case, these typical testors are stored in TTR. Then, the first feature in LP is added
to L and the remaining features in LP that are non-exclusive with L are selected again.
This process is repeated until all typical testors containing the first feature in BM are
found. Then, the algorithm starts from the second feature in BM and repeats all steps
until the feature to be analyzed has a zero in the first row of BM (see Step 3c). Notice
that the process of generating candidate feature lists and removing features from the
lists is recursive (TL acts as a stack in which feature lists are added or removed in
order to be reused in the analysis of new feature combinations).

The proposed method is described as follows:

Input: A basic matrix BM.
Output: The set of all typical testors of BM.

1. Sorting rows and columns of BM:
a. Let F be the set of rows that have the minimum number of 1’s.
b. For each row f ∈ F obtain the number of 1’s in all columns of BM that contain a 1 in f. Put the row

with the maximum number as the first row in BM. If there is more than one row with the maximum
value, then take any one of them.

c. Let C1 (C0) be the set of columns with a 1 (0) in the first row of BM. Rearrange the columns such
that columns in C1 are on the left and columns in C0 are on the right. Sort, in descending order,
the columns in C1 according to its number of 1’s. The columns in C0 are sorted in the same way.

2. Initialization:
a. L = []
b. Let TTR be the list of typical testors, TTR = []. Notice that TTR is a list of lists.
c. Let R be the list of all features in BM and TL = [R]. Notice that TL is also a list of lists.

3. Process:
a. Let RL be the last list of features in TL, i.e. RL = last(TL).
b. Let X be the first feature of RL.
c. If | TL | = 1 then

If the column corresponding to X (cX) has a zero in the first row of BM, then return TTR and END
else, if cX = (1,…,1) then TTR = TTR + [[X]], RL= RL \ [X] and go to Step 3b.

d. L = subst(L, X, |TL|)
e. Remove the last element (list) from TL, i.e. TL = TL \ [last(TL)].
f. RL = RL \ [X]
g. LP = nonExcl (RL, L)
h. TTR = TTR + TypL(RL, L)
i. If |RL| > 1, then

 TL= TL+ [RL]
 If | LP | > 1, then TL= TL + [LP]

j. Go to Step 3.

438 A. Lias-Rodríguez and A. Pons-Porrata

Notice that the list LP includes the features of RL that are non-exclusive with L but
do not form typical testors with L, whereas TypL(RL, L) contains the features of RL
that constitute typical testors with the features in L. Then, the Steps 3g and 3h can be
performed simultaneously as follows:

For each feature X’ of RL:
1. Calculate amL+[X’] from amL by using the Proposition 2.
2. If amL+[X’] ≠ amL (see condition 1 of Proposition 4) then

a. Calculate cmL+[X’] from cmL by using the Proposition 3.
b. If cmL+[X’] ∧ cXi ≠ (0,…,0) ∀Xi∈L (see condition 2 of Proposition 4) then

If amL+[X’] = (1,…,1) then
Add L+ [X’] to TTR (L + [X’] is a typical testor by Proposition 5)

else, Add X’ to LP

The characteristics that allow BR method to avoid the analysis of irrelevant feature
subsets are the following:
• The algorithm directly examines the feature combinations generated from the fea-

tures in L and those belonging to LP (non-exclusive ones with L), avoiding the
analysis of the remaining combinations.

• Since features that constitute a typical testor with L are not included in LP, the
algorithm disregards all supersets of a typical testor.

CT-EXT method firstly generates testors and secondly verifies the typicity property,
whereas LEX and BR methods firstly generate feature subsets satisfying the typicity
property and then, verify the testor condition. CT-EXT attempted to reduce the cost of
verifying the typicity property of LEX, but at expense of generating a greater number
of feature subsets.

Example 2. The following table shows the feature subsets generated by LEX, CT-EXT
and BR methods for the basic matrix BM until the subset {X2,X6} (represented as 26 in
the table) is generated. Typical testors are highlighted in boldface. As we can see, BR
generates the least number of feature subsets. Notice that LP=[X3,X4] when the first 6
subsets are generated. Therefore, BR can jump to {X1,X3,X4} disregarding the remain-
ing combinations that include X1. However, LEX is not able to disregard these combi-
nations. On the other hand, CT-EXT examines several subsets including X1 and X2
even though neither of them constitutes a typical testor. The definition of that a fea-
ture X contributes to a subset [8] only verifies that X has at least a typical row, but
disregards that features in the subset can lose its typical rows due to X. Notice that X2
contributes to {X1}, but X1 lost its typical row (the first one) due to X2.

LEX CT-EXT BR
1 146 1 135 23 1 23
12 15 12 136 25 12 24
13 16 123 14 26 13 25
134 2 124 145 14 26
135 23 125 146 15
136 24 126 15 16
14 25 13 16 134
145 26 134 2 2

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

111010

110100

000011
654321 XXXXXX

BM

 BR: A New Method for Computing All Typical Testors 439

4 Experimental Results

In order to evaluate the performance of the proposed method, we compare the time
spent to obtain all typical testors by our method and the two best algorithms reported
in the literature: LEX and CT-EXT. It is worth mentioning that the source code of the
CT-EXT algorithm was provided by the authors. To ensure a fair comparison all
methods are carried out on an Intel Pentium Dual Core 1.6 GHz, 1 Gb RAM.

For this comparison we use five data sets obtained from UCI Machine Learning
Repository1. For each one, we generated the basic matrices regarding the strict equal-
ity as comparison criterion for all features. Table 1 shows the run time of the methods
for the basic matrices of real data sets and two basic matrices randomly generated.
Notice that these matrices have different dimensions (see Column 3). The last column
(NTT) indicates the number of calculated typical testors.

Table 1. Run times (h:m:s:ms) of the algorithms for several basic matrices

Data set Class BM LEX CT-EXT BR NTT
Zoo (101 x 17) 7 14 x 17 0:0:00:15 0:0:0:718 0:0:00:00 34

Mushroom (8124 x 22) 2 30 x 22 0:0:00:16 0:0:0:750 0:0:00:00 292
Chess (3196 x 36) 2 29 x 36 0:2:22:16 0:8:01:67 0:0:00:12 4

Dermatology (366 x 34) 6 1124 x 34 0:25:45:7 1:43:15:6 0:0:58:22 115556
Promoter (106 x 57) 2 2761 x 57 1:07:27:5 4:24:23:8 0:3:18:51 7456943

Random -2 150 x 70 0:55:45:3 2:06:30:4 0:4:02:67 44165054
Random -2 100 x 100 2:22:01:9 > 20 hrs 0:10:30:1 183051234

0,1

1

10

100

1000

10000

100000

0 15 30 45 60 75

Number of features

T
 i
m
 e
 (
s)

CT-EXT

LEX

BR

Fig. 1. Run times (in seconds) for basic matrices of 50 rows varying the number of features

As we can observe, the higher dimension of basic matrix, the greater time is
needed to calculate typical testors in all methods. It is important to notice also that BR
achieves considerable time reductions with respect to LEX and CT-EXT. Unlike the
reported results in [8], our experiments revealed that CT-EXT actually performs worse
than LEX.

In order to study the behavior of the algorithms, we show in Figure 1 the run times
(in seconds) of the methods for basic matrices of 50 rows varying the number of

1 http://archive.ics.uci.edu/ml/
2 The number of classes is disregarded, because we randomly generate matrices of 0’s and 1’s.

440 A. Lias-Rodríguez and A. Pons-Porrata

features from 15 to 75. As we expected, the time of all methods grows exponentially
when the number of features is increased. However, notice that our method runs about
10 times faster than the best competitor, LEX and about 100 times faster than CT-
EXT.

Thus, we can conclude that BR is significantly more efficient than other
algorithms.

5 Conclusions

In this paper, a new external scale algorithm BR to calculate all typical testors of a
training matrix has been proposed. The experimental results demonstrate that this
method significantly outperforms the two best algorithms reported in the literature.
The main contributions that ensure the speed up in the calculation of the set of all
typical testors are: a new method for verifying typicity and testor properties which is
based on binary logic and profits from the computer bit operations, the introduction of
a generation mechanism of candidate feature subsets that avoids the analysis of a
greater number of irrelevant subsets, and a prior ordering of the basic matrix that
guarantees that the method finishes as soon as possible.

Future work includes extending our method in order to obtain other generalizations
of the typical testors not restricted to Zhuravlev’s testors (e.g. ε-testors and fuzzy
testors [2]). We also plan to conduct additional experiments with basic matrices of
different densities to evaluate the performance of the proposed method.

References

1. Martínez-Trinidad, J.F., Guzmán-Arenas, A.: The Logical Combinatorial approach to Pat-
tern Recognition: an overview through selected Works. Pattern Recognition 34(4), 741–751
(2001)

2. Lazo-Cortés, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of
concept testor. Pattern Recognition 34(4), 753–762 (2001)

3. Ortiz-Posadas, M.R., Martínez-Trinidad, J.F., Shulcloper, J.R.: A new approach to diferen-
tial diagnosis of diseases. Int. J. Biomed. Compu. 40(3), 179–185 (1996)

4. De la Vega-Doria, L.A., Carrasco-Ochoa, J.A., Shulcloper, J.R.: Fuzzy KORA-W algo-
rithm. In: 6th European Congress on Intelligent Techniques and Soft Computer, Aachen,
Germany, pp. 1190–1194 (1998)

5. Pons-Porrata, A., Gil-García, R., Berlanga-Llavori, R.: Using Typical Testors for Feature
Selection in Text Categorization. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007.
LNCS, vol. 4756, pp. 643–652. Springer, Heidelberg (2007)

6. Pons-Porrata, A., Ruiz-Shulcloper, J., Berlanga-Llavori, R.: A Method for the Automatic
Summarization of Topic-Based Clusters of Documents. In: Sanfeliu, A., Ruiz-Shulcloper, J.
(eds.) CIARP 2003. LNCS, vol. 2905, pp. 596–603. Springer, Heidelberg (2003)

7. Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: a New Algorithm for Computing Typical
Testors. Revista Ciencias Matemáticas 21(1), 85–95 (2003)

8. Sánchez Díaz, G., Lazo Cortés, M.: CT-EXT: An Algorithm for Computing Typical Testor
set. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 506–514.
Springer, Heidelberg (2007)

	BR: A New Method for Computing All Typical Testors
	Introduction
	Basic Concepts
	BR Method
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

