Selective Change-Driven Image Processing: A Speeding-Up Strategy

  • Jose A. Boluda
  • Francisco Vegara
  • Fernando Pardo
  • Pedro Zuccarello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


Biologically inspired schemes are a source for the improvement of visual systems. Real-time implementation of image processing algorithms is constrained by the large amount of data to be processed. Full image processing is many times unnecessary since there are many pixels that suffer a small change or not suffer any change at all. A strategy based on delivering and processing pixels, instead of processing the complete frame, is presented. The pixels that have suffered higher changes in each frame, ordered by the absolute value of its change, are read-out and processed. Two examples are shown: a morphological motion detection algorithm and the Horn and Schunck optical flow algorithm. Results show that the implementation of this strategy achieves execution time speed-up while keeping results comparable to original approaches.


  1. 1.
    Özalevli, E., Higgins, C.M.: Reconfigurable Biologically Inspired Visual Motion Systems Using Modular Neuromorphic VLSI Chips. IEEE Transactions on Circuits and Systems 52(1), 79–92 (2005)CrossRefGoogle Scholar
  2. 2.
    Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits 43(2), 566–576 (2008)CrossRefGoogle Scholar
  3. 3.
    Boluda, J.A., Pardo, F.: Speeding-up differential motion detection algorithms using a change-driven data-flow processing strategy. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 77–84. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Pardo, F., Boluda, J.A., Vegara, F., Zuccarello, P.: On the advantages of asynchronous pixel reading and processing for high-speed motion estimation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 205–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Silc, J., Robic, B., Ungerer, T.: Processor architecture: from dataflow to superscalar and beyond. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Manzanera, A., Richefeu, J.C.: A new motion detection algorithm based on Σ-Δ background estimation. Pattern Recognition Letters 28, 320–328 (2007)CrossRefGoogle Scholar
  7. 7.
    Teng, C.H., Lai, S.H., Chen, Y.S., Hsu, W.H.: Accurate optical flow computation under non-uniform brightness variations. Computer Vision and Image Understanding 97(3), 315–346 (2005)CrossRefGoogle Scholar
  8. 8.
    Díaz, J., Ros, E., Pelayo, F., Ortigosa, E.M., Mota, S.: FPGA-based real-time optical-flow system. IEEE Transactions on Circuits and Systems for Video Technology 16(2), 274–279 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jose A. Boluda
    • 1
  • Francisco Vegara
    • 2
  • Fernando Pardo
    • 1
  • Pedro Zuccarello
    • 1
  1. 1.Departament d’InformàticaUniversitat de ValènciaBurjassotSpain
  2. 2.Institut de RobòticaUniversitat de ValènciaValènciaSpain

Personalised recommendations