Characterization of Simple Closed Surfaces in ℤ3: A New Proposition with a Graph-Theoretical Approach

  • Rémy Malgouyres
  • Jean-Luc Toutant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)


In the present paper, we propose a topological characterization of digital surfaces. We introduce simple local conditions on the neighborhood of a voxel. If each voxel of a 26-connected digital set satisfies them, we prove a Jordan theorem and ensure that this set is strong 6-separating in ℤ3. Thus, we consider it as a digital surface.


  1. 1.
    Rosenfeld, A.: Arcs and curves in digital pictures. Journal of the ACM 20(1), 81–87 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Malgouyres, R.: There is no local characterization of separating and thin objects in z 3. Theoretical Computer Science 163(1&2), 303–308 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Information and Control 51(3), 227–247 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’Etat, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  5. 5.
    Bertrand, G., Malgouyres, R.: Some topological properties of discrete surfaces. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 325–336. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Malgouyres, R., Bertrand, G.: A new local property of strong n-surfaces. Pattern Recognition Letters 20(4), 417–428 (1999)CrossRefGoogle Scholar
  7. 7.
    Malgouyres, R.: A definition of surfaces of z 3: a new 3d discrete jordan theorem. Theoretical Computer Science 186(1-2), 1–41 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Couprie, M., Bertrand, G.: Simplicity surfaces: a new definition of surfaces in z 3. In: SPIE Vision Geometry V, vol. 3454, pp. 40–51 (1998)Google Scholar
  9. 9.
    Ciria, J.C., Domínguez, E., Francés, A.R.: Separation theorems for simplicity 26-surfaces. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 45–56. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Bertrand, G.: On p-simple points. Compte-Rendus de l’Académie des Sciences, Série 1, Mathématique 321(8), 1077–1084 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kong, T.Y.: A digital fundamental group. Computers & Graphics 13(2), 159–166 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rémy Malgouyres
    • 1
  • Jean-Luc Toutant
    • 1
  1. 1.LAICUniversité d’AuvergneFrance

Personalised recommendations