Skip to main content

Adenosine Receptors and the Heart: Role in Regulation of Coronary Blood Flow and Cardiac Electrophysiology

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

Adenosine is an autacoid that plays a critical role in regulating cardiac function, including heart rate, contractility, and coronary flow. In this chapter, current knowledge of the functions and mechanisms of action of coronary flow regulation and electrophysiology will be discussed. Currently, there are four known adenosine receptor (AR) subtypes, namely A1, A2A, A2B, and A3. All four subtypes are known to regulate coronary flow. In general, A2AAR is the predominant receptor subtype responsible for coronary blood flow regulation, which dilates coronary arteries in both an endothelial-dependent and -independent manner. The roles of other ARs and their mechanisms of action will also be discussed. The increasing popularity of gene-modified models with targeted deletion or overexpression of a single AR subtype has helped to elucidate the roles of each receptor subtype. Combining pharmacologic tools with targeted gene deletion of individual AR subtypes has proven invaluable for discriminating the vascular effects unique to the activation of each AR subtype. Adenosine exerts its cardiac electrophysiologic effects mainly through the activation of A1AR. This receptor mediates direct as well as indirect effects of adenosine (i.e., anti-β-adrenergic effects). In supraventricular tissues (atrial myocytes, sinuatrial node and atriovetricular node), adenosine exerts both direct and indirect effects, while it exerts only indirect effects in the ventricle. Adenosine exerts a negative chronotropic effect by suppressing the automaticity of cardiac pacemakers, and a negative dromotropic effect through inhibition of AV-nodal conduction. These effects of adenosine constitute the rationale for its use as a diagnostic and therapeutic agent. In recent years, efforts have been made to develop A1R-selective agonists as drug candidates that do not induce vasodilation, which is considered an undesirable effect in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

AH:

Atrial to His bundle activation time (representative of AV-nodalconduction time)

AR:

Adenosine receptor

ATP:

Adenosine 5-triphosphate

AV:

Atrioventricular

AVN:

AV-nodal

CCPA:

2-Chloro-N 6-cyclopentyl-adenosine

CF:

Coronary flow

CGS-21680:

2-[p-(2-carboxyethyl)]-phenylethyl-amino-5-N-ethylcarboxamidoadenosine

CGS-22492:

2-[(2-Cyclohexylethyl)amino]-adenosine

Cox-I:

Cyclooxygenase I

CPA:

N 6-Cyclopentyladenosine

DAD:

Delayed afterdepolarizations

DPCPX:

1,3-Dipropyl-8-cyclopentylxanthine

DPMA:

N 6-[2-(3,5-Dimethoxyphenyl)-2-(2-methoxyphenyl] ethyladenosine

ECG:

Electrocardiogram

ERK:

Extracellular regulated kinase

HV:

His bundle to ventricular activation time

HUT:

Head-up tilt table test

I Ca :

Inward calcium current

I CaL :

Inward L-type Ca2 + current

I Cl :

Chloride current

I f :

Hyperpolarization-activated current (“funny” current)

I KAdo,Ach :

Outward potassium current

I K,ATP :

ATP-dependent outward potassium current

I Ti :

Transient inward current

JNK:

Jun N-terminal kinase

KO:

Knockout

L-NMA:

N G-Methyl-l-arginine

LAD:

Left anterior descending artery

LQTS:

Long QT interval syndrome

MAPK:

Mitogen-activated protein kinase

NECA:

Adenosine-5-N-ethylcarboxamide

NO:

Nitric oxide

PDBu:

Phorbol 12,13-dibutyrate

PI3-kinase:

Phosphatidylinositol 3-kinase

PLC:

Phospholipase C

PKA:

Protein kinase A

PKB (Akt):

Protein kinase B

PKC:

Protein kinase C

PR:

P wave to R wave interval on the ECG

PSVT:

Paroxysmal supraventricular tachycardia

QT:

Q wave–T wave interval in the ECG

QTc:

Corrected QT interval

RR:

R wave–R wave interval in the ECG

SN:

Sinus node

SR:

Sarcoplasmic reticulum

SSS:

Sick sinus syndrome

SVT:

Supraventricular tachycardia

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  • Abebe W, Makujina SR, Mustafa SJ (1994) Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. Am J Physiol 266:H2018–H2025

    CAS  PubMed  Google Scholar 

  • Abebe W, Hussain T, Olanrewaju H, Mustafa SJ (1995) Role of nitric oxide in adenosine receptor-mediated relaxation of porcine coronary artery. Am J Physiol 269:H1672–H1678

    CAS  PubMed  Google Scholar 

  • Ansari HR, Nadeem A, Tilley SL, Mustafa SJ (2007) Involvement of COX-1 in A3 adenosine receptor-mediated contraction through endothelium in mice aorta. Am J Physiol Heart Circ Physiol 293:H3448–H3455

    Article  CAS  PubMed  Google Scholar 

  • Ansari H, Teng B, Nadeem A, Schnermann J, Mustafa S (2008) A1 adenosine receptor-activated protein kinase C signaling in A1 knock-out mice coronary artery smooth muscle cells. FASEB J 22:: 1152.11

    Google Scholar 

  • Ashton KJ, Nilsson U, Willems L, Holmgren K, Headrick JP (2003) Effects of aging and ischemia on adenosine receptor transcription in mouse myocardium. Biochem Biophys Res Commun 312:367–372

    Article  CAS  PubMed  Google Scholar 

  • Ashton KJ, Peart JN, Morrison RR, Matherne GP, Blackburn MR, and Headrick JP (2007) Genetic modulation of adenosine receptor function and adenosine handling in murine hearts: insights and issues. J Mol Cell Cardiol 42:693–705

    Article  CAS  PubMed  Google Scholar 

  • Belardinelli L, Isenberg G (1983) Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 53:287–297

    CAS  PubMed  Google Scholar 

  • Belardinelli L, Mattos EC, Berne RM (1981) Evidence for adenosine mediation of atrioventricular block in the ischemic canine myocardium. J Clin Invest 68:195–205

    Article  CAS  PubMed  Google Scholar 

  • Belardinelli L, West GA, Clemo SHF (1987). Regulation of atrioventricular node function by adenosine. In: Gerlach E, Becker B (eds) Topics and perspectives of adenosine research. Springer, Berlin, pp 344–355

    Google Scholar 

  • Belardinelli L, Giles WR, West A (1988) Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. J Physiol 405:615–633

    CAS  PubMed  Google Scholar 

  • Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M (1995) Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J 9:359–365

    CAS  PubMed  Google Scholar 

  • Belardinelli L, Shryock JC, Snowdy S, Zhang Y, Monopoli A, Lozza G, Ongini E, Olsson RA, Dennis DM (1998) The A2A adenosine receptor mediates coronary vasodilation. J Pharmacol Exp Ther 284:1066–1073

    CAS  PubMed  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    CAS  PubMed  Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47: 807–813

    CAS  PubMed  Google Scholar 

  • Brignole M, Donateo P, Menozzi C (2003) The diagnostic value of ATP testing in patients with unexplained syncope. Europace 5:425–428

    Article  CAS  PubMed  Google Scholar 

  • Bryan PT, Marshall JM (1999) Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia. J Physiol 514 (1): 163–175

    Article  CAS  PubMed  Google Scholar 

  • Burnett D, Abi-Samra F, Vacek JL (1999) Use of intravenous adenosine as a noninvasive diagnostic test for sick sinus syndrome. Am Heart J 137:435–438

    Article  CAS  PubMed  Google Scholar 

  • Carrega L, Saadjian AY, Mercier L, Zouher I, Berge-Lefranc JL, Gerolami V, Giaime P, Sbragia P, Paganelli F, Fenouillet E, Levy S, Guieu RP (2007) Increased expression of adenosine A2A receptors in patients with spontaneous and head-up-tilt-induced syncope. Heart Rhythm 4:870–876

    Article  PubMed  Google Scholar 

  • Cerniway RJ, Yang Z, Jacobson MA, Linden J, Matherne GP (2001) Targeted deletion of A(3) adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am J Physiol Heart Circ Physiol 281:H1751–H1758

    CAS  PubMed  Google Scholar 

  • Cerqueira MD (2006) Advances in pharmacologic agents in imaging: new A2A receptor agonists. Curr Cardiol Rep 8:119–122

    Article  PubMed  Google Scholar 

  • Cheung JW, Lerman BB (2003) CVT-510: a selective A1 adenosine receptor agonist. Cardiovasc Drug Rev 21:277–292

    CAS  PubMed  Google Scholar 

  • Cheung JW, Stein KM, Markowitz SM, Iwai S, Guttigoli AB, Shah BK, Yarlagadda RK, Lerman BB, Mittal S (2004) Significance of adenosine-induced atrioventricular block in patients with unexplained syncope. Heart Rhythm 1:664–668

    Article  PubMed  Google Scholar 

  • Chio CC, Chang YH, Hsu YW, Chi KH, Lin WW (2004) PKA-dependent activation of PKC, p38 MAPK and IKK in macrophage: implication in the induction of inducible nitric oxide synthase and interleukin-6 by dibutyryl cAMP. Cell Signal 16:565–575

    Article  CAS  PubMed  Google Scholar 

  • Clemo HF, Belardinelli L (1986) Effect of adenosine on atrioventricular conduction. I: Site and characterization of adenosine action in the guinea pig atrioventricular node. Circ Res 59: 427–436

    CAS  Google Scholar 

  • Clemo HF, Bourassa A, Linden J, Belardinelli L (1987) Antagonism of the effects of adenosine and hypoxia on atrioventricular conduction time by two novel alkylxanthines: correlation with binding to adenosine A1 receptors. J Pharmacol Exp Ther 242:478–484

    CAS  PubMed  Google Scholar 

  • Conti JB, Belardinelli L, Curtis AB (1995) Usefulness of adenosine in diagnosis of tachyarrhythmias. Am J Cardiol 75:952–955

    Article  CAS  PubMed  Google Scholar 

  • Dana A, Skarli M, Papakrivopoulou J, Yellon DM (2000) Adenosine A(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res 86:989–997

    CAS  PubMed  Google Scholar 

  • Dennis D, Jacobson K, Belardinelli L (1992) Evidence of spare A1-adenosine receptors in guinea pig atrioventricular node. Am J Physiol 262:H661–H671

    CAS  PubMed  Google Scholar 

  • Denyer JC, Brown HF (1990) Pacemaking in rabbit isolated sino-atrial node cells during Cs + block of the hyperpolarization-activated current if. J Physiol 429:401–409

    CAS  PubMed  Google Scholar 

  • Deussen A, Brand M, Pexa A, Weichsel J (2006) Metabolic coronary flow regulation—current concepts. Basic Res Cardiol 101:453–464

    Article  CAS  PubMed  Google Scholar 

  • Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L (2003) Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem 3:369–385

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Borer JS (2007) The funny current: cellular basis for the control of heart rate. Drugs 67(Suppl 2):15–24

    Article  PubMed  Google Scholar 

  • DiMarco JP, Sellers TD, Berne RM, West GA, Belardinelli L (1983) Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation 68:1254–1263

    CAS  PubMed  Google Scholar 

  • Dobson JG, Jr., Fenton RA, Romano FD (1987) The cardiac anti-adrenergic effect of adenosine. Prog Clin Biol Res 230:331–343

    CAS  PubMed  Google Scholar 

  • Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK (2007) Cardioprotection by ecto-5-nucleotidase (CD73)andA2B adenosine receptors. Circulation 115:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111:2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Fabritz L, Kirchhof P, Fortmuller L, Auchampach JA, Baba HA, Breithardt G, Neumann J, Boknik P, Schmitz W (2004) Gene dose-dependent atrial arrhythmias, heart block, and brady-cardiomyopathy in mice overexpressing A(3) adenosine receptors. Cardiovasc Res 62:: 500–508

    Google Scholar 

  • Feoktistov I, Biaggioni I (1997) Adenosine A2B receptors. Pharmacol Rev 49:381–402

    CAS  PubMed  Google Scholar 

  • Flammang D, Pelleg A, Benditt DG (2005) The adenosine triphospate (ATP) test for evaluation of syncope of unknown origin. J Cardiovasc Electrophysiol 16:1388–1389

    PubMed  Google Scholar 

  • Flammang D, AMS Investigators (2006) The ATP test: a useful test for identifying the cardio-inhibitory mechanism of syncope of unknown origin and for directing the therapy. Europace 8(Suppl 1):55

    Google Scholar 

  • Flood AJ, Willems L, Headrick JP (2002) Coronary function and adenosine receptor-mediated responses in ischemic-reperfused mouse heart. Cardiovasc Res 55:161–170

    Article  CAS  PubMed  Google Scholar 

  • Fogaça RTH, Leal-Cardoso JH (1985) Effects of adenosine on digitalis induced arrhythmias. Braz J Med Biol Res 18:663A

    Google Scholar 

  • Fragakis N, Iliadis I, Sidopoulos E, Lambrou A, Tsaritsaniotis E, Katsaris G (2007) The value of adenosine test in the diagnosis of sick sinus syndrome: susceptibility of sinus and atrioventricular node to adenosine in patients with sick sinus syndrome and unexplained syncope. Europace 9:559–562

    Article  PubMed  Google Scholar 

  • Francis JE, Webb RL, Ghai GR, Hutchison AJ, Moskal MA, deJesus R, Yokoyama R, Rovinski SL, Contardo N, Dotson R, Barclay B, Stone GA, Jarvis MF (1991) Highly selective adenosine A2 receptor agonists in a series of N-alkylated 2-aminoadenosines. J Med Chem 34:2570–2579

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn–Schmiedeberg’s Arch Pharmacol 362:364–374

    Google Scholar 

  • Frieden M, Sollini M, Beny J (1999) Substance P and bradykinin activate different types of KCa currents to hyperpolarize cultured porcine coronary artery endothelial cells. J Physiol 519(2):361–371

    Article  CAS  PubMed  Google Scholar 

  • Frobert O, Haink G, Simonsen U, Gravholt CH, Levin M, Deussen A (2006) Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation. J Physiol 570:375–384

    PubMed  Google Scholar 

  • Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA (2006) Cl-IB-MECA [2-chloro-N 6-(3-iodobenzyl)adenosine-5-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther 319:1200–1210

    Article  CAS  PubMed  Google Scholar 

  • Geraets D, Kienzle M (1992) Clinical use of adenosine. Iowa Med 82:25–28

    CAS  PubMed  Google Scholar 

  • Gerlach E, Deuticke B (1966) Comparative studies on the formation of adenosine in the myocardium of different animal species in oxygen deficiency. Klin Wochenschr 44:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Germack R, Dickenson JM (2004) Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J Pharmacol 141:329–339

    Article  CAS  PubMed  Google Scholar 

  • Glavind-Kristensen M, Matchkov V, Hansen VB, Forman A, Nilsson H, Aalkjaer C (2004) KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries. Br J Pharmacol 143:872–880

    Article  CAS  PubMed  Google Scholar 

  • Hack SP, Christie MJ (2003) Adaptations in adenosine signaling in drug dependence: therapeutic implications. Crit Rev Neurobiol 15:235–274

    Article  CAS  PubMed  Google Scholar 

  • Haq SE, Clerk A, Sugden PH (1998) Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett 434:305–308

    Article  CAS  PubMed  Google Scholar 

  • Harrison GJ, Cerniway RJ, Peart J, Berr SS, Ashton K, Regan S, Paul Matherne G, Headrick JP (2002) Effects of A(3) adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc Res 53:147–155

    Article  CAS  PubMed  Google Scholar 

  • Hasan AZ, Abebe W, Mustafa SJ (2000) Antagonism of coronary artery relaxation by adenosine A2A-receptor antagonist ZM241385. J Cardiovasc Pharmacol 35:322–325

    Article  CAS  Google Scholar 

  • Hayward E, Showler L, Soar J (2007) Aminophylline in bradyasystolic cardiac arrest. Emerg Med J 24:582–583

    Article  PubMed  Google Scholar 

  • Headrick JP, Gauthier NS, Morrison RR, Matherne GP (2000) Chronotropic and vasodilatory responses to adenosine and isoproterenol in mouse heart: effects of adenosine A1 receptor overexpression. Clin Exp Pharmacol Physiol 27:185–190

    Article  CAS  PubMed  Google Scholar 

  • Hein TW, Wang W, Zoghi B, Muthuchamy M, Kuo L (2001) Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J Mol Cell Cardiol 33:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hodgson JM, Dib N, Kern MJ, Bach RG, Barrett RJ (2007) Coronary circulation responses to binodenoson, a selective adenosine A2A receptor agonist. Am J Cardiol 99:1507–1512

    Article  CAS  PubMed  Google Scholar 

  • Hori M, Kitakaze M (1991) Adenosine, the heart, and coronary circulation. Hypertension 18: 565–574

    CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Prat-Vidal C, Llach A, Ciruela F, Casado V, Lluis C, Bayes-Genis A, Cinca J, Franco R (2006) Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovasc Res 72:292–302

    Article  CAS  PubMed  Google Scholar 

  • Hua X, Kovarova M, Chason KD, Nguyen M, Koller BH, Tilley SL (2007) Enhanced mast cell activation in mice deficient in the A2b adenosine receptor. J Exp Med 204:117–128

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Mustafa SJ (1993) Regulation of adenosine receptor system in coronary artery: functional studies and cAMP. Am J Physiol 264:H441–H447

    CAS  PubMed  Google Scholar 

  • Hussain T, Mustafa SJ (1995) Binding of A1 adenosine receptor ligand [3H]8-cyclopentyl-1,3-dipropylxanthine in coronary smooth muscle. Circ Res 77:194–198

    CAS  PubMed  Google Scholar 

  • Hutchinson SA, Scammells PJ (2004) A(1) adenosine receptor agonists: medicinal chemistry and therapeutic potential. Curr Pharm Des 10:2021–2039

    Article  CAS  PubMed  Google Scholar 

  • Hutchison AJ, Webb RL, Oei HH, Ghai GR, Zimmerman MB, Williams M (1989) CGS 21680C, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J Pharmacol Exp Ther 251:47–55

    CAS  PubMed  Google Scholar 

  • Ingwall JS (2007) On substrate selection for ATP synthesis in the failing human myocardium. Am J Physiol Heart Circ Physiol 293:H3225–H3226

    Article  CAS  PubMed  Google Scholar 

  • Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    Article  CAS  PubMed  Google Scholar 

  • Iwai S, Markowitz SM, Stein KM, Mittal S, Slotwiner DJ, Das MK, Cohen JD, Hao SC, Lerman BB (2002) Response to adenosine differentiates focal from macroreentrant atrial tachycardia: validation using three-dimensional electroanatomic mapping. Circulation 106:2793–2799

    Article  CAS  PubMed  Google Scholar 

  • Iwai S, Cantillon DJ, Kim RJ, Markowitz SM, Mittal S, Stein KM, Shah BK, Yarlagadda RK, Cheung JW, Tan VR, Lerman BB (2006) Right and left ventricular outflow tract tachycardias: evidence for a common electrophysiologic mechanism. J Cardiovasc Electrophysiol 17: 1052–1058

    Article  PubMed  Google Scholar 

  • Kalyankrishna S, Malik KU (2003) Norepinephrine-induced stimulation of p38 mitogen-activated protein kinase is mediated by arachidonic acid metabolites generated by activation of cytosolic phospholipase A(2) in vascular smooth muscle cells. J Pharmacol Exp Ther 304:761–772

    Article  CAS  PubMed  Google Scholar 

  • Keim S, Curtis AB, Belardinelli L, Epstein ML, Staples ED, Lerman BB (1992) Adenosine-induced atrioventricular block: a rapid and reliable method to assess surgical and radiofrequency catheter ablation of accessory atrioventricular pathways. J Am Coll Cardiol 19: 1005–1012

    CAS  PubMed  Google Scholar 

  • Kemp BK, Cocks TM (1999) Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol 126:1796–1800

    Article  CAS  PubMed  Google Scholar 

  • Kim N, Chung J, Kim E, Han J (2003) Changes in the Ca2 + -activated K + channels of the coronary artery during left ventricular hypertrophy. Circ Res 93:541–547

    Article  CAS  PubMed  Google Scholar 

  • Kirchhof P, Fabritz L, Fortmuller L, Matherne GP, Lankford A, Baba HA, Schmitz W, Breithardt G, Neumann J, Boknik P (2003) Altered sinus nodal and atrioventricular nodal function in freely moving mice overexpressing the A1 adenosine receptor. Am J Physiol Heart Circ Physiol 285:H145–H153

    CAS  PubMed  Google Scholar 

  • Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K + channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259:H820–H826

    CAS  PubMed  Google Scholar 

  • Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, Lammertsma AA, Visser FC (2007) Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 115:918–927

    Article  PubMed  Google Scholar 

  • Komalavilas P, Mehta S, Wingard CJ, Dransfield DT, Bhalla J, Woodrum JE, Molinaro JR, Brophy CM (2001) PI3-kinase/Akt modulates vascular smooth muscle tone via cAMP signaling pathways. J Appl Physiol 91:1819–1827

    CAS  PubMed  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  CAS  PubMed  Google Scholar 

  • Lerman BB (1993) Response of nonreentrant catecholamine-mediated ventricular tachycardia to endogenous adenosine and acetylcholine. Evidence for myocardial receptor-mediated effects. Circulation 87:382–390

    CAS  Google Scholar 

  • Lerman BB, Belardinelli L, West GA, Berne RM, DiMarco JP (1986) Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation 74:270–280

    CAS  PubMed  Google Scholar 

  • Lerman BB, Wesley RC, Jr., DiMarco JP, Haines DE, Belardinelli L (1988) Antiadrenergic effects of adenosine on His-Purkinje automaticity. Evidence for accentuated antagonism. J Clin Invest 82:2127–2135

    Article  CAS  Google Scholar 

  • Lerman BB, Stein K, Engelstein ED, Battleman DS, Lippman N, Bei D, Catanzaro D (1995) Mechanism of repetitive monomorphic ventricular tachycardia. Circulation 92:421–429

    CAS  PubMed  Google Scholar 

  • Lerman BB, Stein KM, Markowitz SM (1997) Mechanisms of idiopathic left ventricular tachycardia. J Cardiovasc Electrophysiol 8:571–583

    Article  CAS  PubMed  Google Scholar 

  • Lerman BB, Stein KM, Markowitz SM, Mittal S, Slotwiner DJ (2000) Ventricular arrhythmias in normal hearts. Cardiol Clin 18:265–291

    Article  CAS  PubMed  Google Scholar 

  • Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, Dobson JG, Jr. (1998) Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res 80:357–364

    Article  CAS  PubMed  Google Scholar 

  • Li PL, Zhang DX, Zou AP, Campbell WB (1999) Effect of ceramide on KCa channel activity and vascular tone in coronary arteries. Hypertension 33:1441–1446

    CAS  PubMed  Google Scholar 

  • Lindsay BD (2007) Focal and macroreentrant atrial tachycardia: from bench to bedside and back to the bench again. Heart Rhythm 4:1361–1363

    Article  PubMed  Google Scholar 

  • Liu Y, Terata K, Rusch NJ, Gutterman DD (2001) High glucose impairs voltage-gated K( + ) channel current in rat small coronary arteries. Circ Res 89:146–152

    Article  CAS  PubMed  Google Scholar 

  • Lowes VL, Ip NY, Wong YH (2002) Integration of signals from receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 11:5–19

    Article  CAS  PubMed  Google Scholar 

  • Mader TJ, Menegazzi JJ, Betz AE, Logue ES, Callaway CW, Sherman LD (2006) Adenosine A1 receptor antagonism hastens the decay in ventricular fibrillation waveform morphology during porcine cardiac arrest. Resuscitation 71:254–259

    Article  CAS  PubMed  Google Scholar 

  • Makujina SR, Sabouni MH, Bhatia S, Douglas FL, Mustafa SJ (1992) Vasodilatory effects of adenosine A2 receptor agonists CGS 21680 and CGS 22492 in human vasculature. Eur J Pharmacol 221:243–247.

    Article  CAS  PubMed  Google Scholar 

  • Marala RB, Mustafa SJ (1995a) Adenosine A1 receptor-induced upregulation of protein kinase C: role of pertussis toxin-sensitive G protein(s). Am J Physiol 269:H1619–H1624

    CAS  PubMed  Google Scholar 

  • Marala RB, Mustafa SJ (1995b) Adenosine analogues prevent phorbol ester-induced PKC depletion in porcine coronary artery via A1 receptor. Am J Physiol 268:H271–H277

    CAS  PubMed  Google Scholar 

  • Marala RB, Mustafa SJ (1995c) Modulation of protein kinase C by adenosine: involvement of adenosine A1 receptor-pertussis toxin sensitive nucleotide binding protein system. Mol Cell Biochem 149–150:51–58

    Article  PubMed  Google Scholar 

  • Markowitz SM, Nemirovksy D, Stein KM, Mittal S, Iwai S, Shah BK, Dobesh DP, Lerman BB (2007) Adenosine-insensitive focal atrial tachycardia: evidence for de novo micro-re-entry in the human atrium. J Am Coll Cardiol 49:1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Markowitz SM, Stein KM, Mittal S, Slotwiner DJ, Lerman BB (1999) Differential effects of adenosine on focal and macroreentrant atrial tachycardia. J Cardiovasc Electrophysiol 10:489–502

    Article  CAS  PubMed  Google Scholar 

  • Meloche S, Landry J, Huot J, Houle F, Marceau F, Giasson E (2000) p38 MAP kinase pathway regulates angiotensin II-induced contraction of rat vascular smooth muscle. Am J Physiol Heart Circ Physiol 279:H741–H751

    CAS  PubMed  Google Scholar 

  • Mittal S, Stein KM, Markowitz SM, Iwai S, Guttigoli A, Lerman BB (2004) Single-stage adenosine tilt testing in patients with unexplained syncope. J Cardiovasc Electrophysiol 15:637–640

    Article  PubMed  Google Scholar 

  • Morrison RR, Talukder MA, Ledent C, Mustafa SJ (2002) Cardiac effects of adenosine in A(2A) receptor knockout hearts: uncovering A(2B) receptors. Am J Physiol Heart Circ Physiol 282:H437–H444

    CAS  PubMed  Google Scholar 

  • Morrison RR, Teng B, Oldenburg PJ, Katwa LC, Schnermann JB, Mustafa SJ (2006) Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Am J Physiol Heart Circ Physiol 291:H1875–H1882

    Article  CAS  PubMed  Google Scholar 

  • Morrison RR, Tan XL, Ledent C, Mustafa SJ, Hofmann PA (2007) Targeted deletion of A2A adenosine receptors attenuates the protective effects of myocardial postconditioning. Am J Physiol Heart Circ Physiol 293:H2523–H2529

    Article  CAS  PubMed  Google Scholar 

  • Mustafa SJ, Abebe W (1996) Coronary vasodilation by adenosine: receptor subtypes and mechanisms of action. Drug Dev Res 39:308–313

    Article  CAS  Google Scholar 

  • Mustafa SJ, Askar AO (1985) Evidence suggesting an Ra-type adenosine receptor in bovine coronary arteries. J Pharmacol Exp Ther 232:49–56

    CAS  PubMed  Google Scholar 

  • Mutafova-Yambolieva VN, Keef KD (1997) Adenosine-induced hyperpolarization in guinea pig coronary artery involves A2b receptors and KATP channels. Am J Physiol 273:H2687–H2695

    CAS  PubMed  Google Scholar 

  • Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  • Niiya K, Uchida S, Tsuji T, Olsson RA (1994) Glibenclamide reduces the coronary vasoactivity of adenosine receptor agonists. J Pharmacol Exp Ther 271:14–19

    CAS  PubMed  Google Scholar 

  • Nitenberg A, Durand E, Delatour B, Sdiri W, Raha S, Lafont A (2007) Postocclusion hyperemia provides a better estimate of coronary reserve than intracoronary adenosine in patients with coronary artery stenosis. J Invasive Cardiol 19:390–394

    PubMed  Google Scholar 

  • Nogami A (2002) Idiopathic left ventricular tachycardia: assessment and treatment. Card Electrophysiol Rev 6:448–457

    Article  PubMed  Google Scholar 

  • Olanrewaju HA, Mustafa SJ (2000) Adenosine A(2A) and A(2B) receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 35:171–177

    CAS  PubMed  Google Scholar 

  • Olanrewaju HA, Qin W, Feoktistov I, Scemama JL, Mustafa SJ (2000) Adenosine A(2A) and A(2B) receptors in cultured human and porcine coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 279:H650–H656

    CAS  PubMed  Google Scholar 

  • Olanrewaju HA, Gafurov BS, Lieberman EM (2002) Involvement of K + channels in adenosine A2A and A2B receptor-mediated hyperpolarization of porcine coronary artery endothelial cells. J Cardiovasc Pharmacol 40:43–49

    Article  CAS  PubMed  Google Scholar 

  • Olsson RA (1970) Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ Res 26:301–306

    CAS  PubMed  Google Scholar 

  • Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Parry SW, Nath S, Bourke JP, Bexton RS, Kenny RA (2006) Adenosine test in the diagnosis of unexplained syncope: marker of conducting tissue disease or neurally mediated syncope? Eur Heart J 27:1396–1400

    Article  CAS  PubMed  Google Scholar 

  • Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114:208–221

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Belardinelli L (1993) Cardiac electrophysiology and pharmacology of adenosine: basic and clinical aspects. Cardiovasc Res 27:54–61

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Kutalek SP (1997) Adenosine in the mammalian heart: nothing to get excited about. Trends Pharmacol Sci 18:236–238

    CAS  PubMed  Google Scholar 

  • Peterman C, Sanoski CA (2005) Tecadenoson: a novel, selective A1 adenosine receptor agonist. Cardiol Rev 13:315–321

    Article  PubMed  Google Scholar 

  • Pelleg A, Mitamura H, Mitsuoka T, Michelson EL, Dreifus LS (1986) Effects of adenosine and adenosine 5-triphosphate on ventricular escape rhythm in the canine heart. J Am Coll Cardiol 8:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Hurt C, Miyagawa A, Michelson EL, Dreifus LS (1990a) Differential sensitivity of cardiac pacemakers to exogenous adenosine in vivo. Am J Physiol 258:H1815–H1822

    CAS  PubMed  Google Scholar 

  • Pelleg A, Hurt CM, Michelson EL (1990b) Cardiac effects of adenosine and ATP. Ann N Y Acad Sci 603:19–30

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Hurt CM, Hewlett EL (1996) ATP shortens atrial action potential duration in the dog: role of adenosine, the vagus nerve, and G protein. Can J Physiol Pharmacol 74:15–22

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Katchanov G, Xu J (1997) Autonomic neural control of cardiac function: modulation by adenosine and adenosine 5-triphosphate. Am J Cardiol 79:11–14

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Pennock RS, Kutalek SP (2002) Proarrhythmic effects of adenosine: one decade of clinical data. Am J Ther 9:141–147

    Article  PubMed  Google Scholar 

  • Quayle JM, Nelson MT, Standen NB (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77:1165–1232

    CAS  PubMed  Google Scholar 

  • Rahman A, Anwar KN, Minhajuddin M, Bijli KM, Javaid K, True AL, Malik AB (2004) cAMP Targeting of p38 MAP kinase Inhibits thrombin-induced NF-{kappa}B activation and ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 287:L1017–L1024

    Article  CAS  PubMed  Google Scholar 

  • Ramagopal MV, Chitwood RW Jr, Mustafa SJ (1988) Evidence for an A2 adenosine receptor in human coronary arteries. Eur J Pharmacol 151:483–486

    Article  CAS  PubMed  Google Scholar 

  • Ray CJ, Marshall JM (2006) The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 570:85–96

    Article  CAS  PubMed  Google Scholar 

  • Reichelt ME, Willems L, Molina JG, Sun CX, Noble JC, Ashton KJ, Schnermann J, Blackburn MR, Headrick JP (2005) Genetic deletion of the A1 adenosine receptor limits myocardial ischemic tolerance. Circ Res 96:363–367

    Article  CAS  PubMed  Google Scholar 

  • Rekik M, Mustafa JS (2003) Modulation of A2A adenosine receptors and associated Galphas proteins by ZM 241385 treatment of porcine coronary artery. J Cardiovasc Pharmacol 42:736–744

    Article  CAS  PubMed  Google Scholar 

  • Resh W, Feuer J, Wesley RC, Jr. (1992) Intravenous adenosine: a noninvasive diagnostic test for sick sinus syndrome. Pacing Clin Electrophysiol 15:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Robinson AJ, Dickenson JM (2001) Regulation of p42/p44 MAPK and p38 MAPK by the adenosine A(1) receptor in DDT(1)MF-2 cells. Eur J Pharmacol 413:151–161

    Article  CAS  PubMed  Google Scholar 

  • Rogers PA, Chilian WM, Bratz IN, Bryan RM, Jr., Dick GM (2007) H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292:H1404–H1411

    Article  CAS  PubMed  Google Scholar 

  • Rubio R, Wiedmeier VT, Berne RM (1974) Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6:561–566

    Article  CAS  PubMed  Google Scholar 

  • Saadjian AY, Levy S, Franceschi F, Zouher I, Paganelli F, Guieu RP (2002) Role of endogenous adenosine as a modulator of syncope induced during tilt testing. Circulation 106:569–574

    Article  CAS  PubMed  Google Scholar 

  • Salloum FN, Das A, Thomas CS, Yin C, Kukreja RC (2007) Adenosine A(1) receptor mediates delayed cardioprotective effect of sildenafil in mouse. J Mol Cell Cardiol 43:545–551

    Article  CAS  PubMed  Google Scholar 

  • Sanders L, Rakovic S, Lowe M, Mattick PA, Terrar DA (2006) Fundamental importance of \({\mathrm{Na}}^{+}\mbox{ -}{\mathrm{Ca}}^{2+}\) exchange for the pacemaking mechanism in guinea-pig sino-atrial node. J Physiol 571:639–649

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 372:29–35

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2002) Adenosine A2B receptors activate extracellular signal-regulated kinase ERK 1/2 and stress-activated protein kinase p38. In: XIVth World Congress of Pharmacology, San Francisco, CA, 7–12 July 2002, 44(2):A262

    Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  CAS  PubMed  Google Scholar 

  • Shen WK, Kurachi Y (1995) Mechanisms of adenosine-mediated actions on cellular and clinical cardiac electrophysiology. Mayo Clin Proc 70:274–291

    Article  CAS  PubMed  Google Scholar 

  • Shen WK, Hammill SC, Munger TM, Stanton MS, Packer DL, Osborn MJ, Wood DL, Bailey KR, Low PA, Gersh BJ (1996) Adenosine: potential modulator for vasovagal syncope. J Am Coll Cardiol 28:146–154

    Article  CAS  PubMed  Google Scholar 

  • Shryock JC, Snowdy S, Baraldi PG, Cacciari B, Spalluto G, Monopoli A, Ongini E, Baker SP, Belardinelli L (1998) A2A-adenosine receptor reserve for coronary vasodilation. Circulation 98:711–718

    CAS  PubMed  Google Scholar 

  • Smits GJ, McVey M, Cox BF, Perrone MH, Clark KL (1998) Cardioprotective effects of the novel adenosine A1 ∕ A2 receptor agonist AMP 579 in a porcine model of myocardial infarction. J Pharmacol Exp Ther 286:611–618

    CAS  PubMed  Google Scholar 

  • Song Y, Thedford S, Lerman BB, Belardinelli L (1992) Adenosine-sensitive afterdepolarizations and triggered activity in guinea pig ventricular myocytes. Circ Res 70:743–753

    CAS  PubMed  Google Scholar 

  • Song Y, Wu L, Shryock JC, Belardinelli L (2002) Selective attenuation of isoproterenol-stimulated arrhythmic activity by a partial agonist of adenosine A1 receptor. Circulation 105:118–123

    Article  CAS  PubMed  Google Scholar 

  • Sun Park W, Kyoung Son Y, Kim N, Boum Youm J, Joo H, Warda M, Ko JH, Earm YE, Han J (2006) The protein kinase A inhibitor, H-89, directly inhibits KATP and Kir channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 340:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Taegtmeyer H, Wilson CR, Razeghi P, Sharma S (2005) Metabolic energetics and genetics in the heart. Ann N Y Acad Sci 1047:208–218

    Article  CAS  PubMed  Google Scholar 

  • Talukder MA, Morrison RR, Jacobson MA, Jacobson KA, Ledent C, Mustafa SJ (2002a) Targeted deletion of adenosine A(3) receptors augments adenosine-induced coronary flow in isolated mouse heart. Am J Physiol Heart Circ Physiol 282:H2183–H2189

    CAS  PubMed  Google Scholar 

  • Talukder MA, Morrison RR, Mustafa SJ (2002b) Comparison of the vascular effects of adenosine in isolated mouse heart and aorta. Am J Physiol Heart Circ Physiol 282:H49–H57

    CAS  PubMed  Google Scholar 

  • Talukder MA, Morrison RR, Ledent C, Mustafa SJ (2003) Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc Pharmacol 41:562–570

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Parker M, Fei Q, Loutzenhiser R (1999) Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney. Am J Physiol 277:F926–F933

    CAS  PubMed  Google Scholar 

  • Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ (2005) Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 288:H1411–H1416

    Article  CAS  PubMed  Google Scholar 

  • Tawfik HE, Teng B, Morrison RR, Schnermann J, Mustafa SJ (2006) Role of A1 adenosine receptor in the regulation of coronary flow. Am J Physiol Heart Circ Physiol 291:H467–H472

    Article  CAS  PubMed  Google Scholar 

  • Teng B, Qin W, Ansari HR, Mustafa SJ (2005) Involvement of p38-mitogen-activated protein kinase in adenosine receptor-mediated relaxation of coronary artery. Am J Physiol Heart Circ Physiol 288:H2574–H2580

    Article  CAS  PubMed  Google Scholar 

  • Teng B, Ledent C, Mustafa SJ (2008) Up-regulation of A(2B) adenosine receptor in A(2A) adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44:905–914

    Article  CAS  PubMed  Google Scholar 

  • Tune JD, Gorman MW, Feigl EO (2004) Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol 97:404–415

    Article  PubMed  Google Scholar 

  • Viskin S, Belhassen B, Roth A, Reicher M, Averbuch M, Sheps D, Shalabye E, Laniado S (1993) Aminophylline for bradyasystolic cardiac arrest refractory to atropine and epinephrine. Ann Intern Med 118:279–281

    CAS  PubMed  Google Scholar 

  • Viskin S, Rosso R, Rogowski O, Belhassen B, Levitas A, Wagshal A, Katz A, Fourey D, Zeltser D, Oliva A, Pollevick GD, Antzelevitch C, Rozovski U (2006) Provocation of sudden heart rate oscillation with adenosine exposes abnormal QT responses in patients with long QT syndrome: a bedside test for diagnosing long QT syndrome. Eur Heart J 27:469–475

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Whitt SP, Rubin LJ, Huxley VH (2005) Differential coronary microvascular exchange responses to adenosine: roles of receptor and microvessel subtypes. Microcirculation 12: 313–326

    Article  CAS  PubMed  Google Scholar 

  • Watts SW, Florian JA, Monroe KM (1998) Dissociation of angiotensin II-stimulated activation of mitogen-activated protein kinase kinase from vascular contraction. J Pharmacol Exp Ther 286:1431–1438

    CAS  PubMed  Google Scholar 

  • Wilden PA, Agazie YM, Kaufman R, Halenda SP (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am J Physiol 275: H1209–H1215

    CAS  PubMed  Google Scholar 

  • Xu J, Tong H, Wang L, Hurt CM, Pelleg A (1993) Endogenous adenosine, A1 adenosine receptor, and pertussis toxin sensitive guanine nucleotide binding protein mediate hypoxia induced AV nodal conduction block in guinea pig heart in vivo. Cardiovasc Res 27:134–140

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang L, Hurt CM, Pelleg A (1994) Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo. Circulation 89:1209–1216

    CAS  PubMed  Google Scholar 

  • Xu J, Hurt CM, Pelleg A (1995) Digoxin-induced ventricular arrhythmias in the guinea pig heart in vivo: evidence for a role of endogenous catecholamines in the genesis of delayed afterdepolarizations and triggered activity. Heart Vessels 10:119–127

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kussmaul W, Kurnik PB, Al-Ahdav M, Pelleg A (2005) Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. V. Role of purinergic receptors. Am J Physiol Regul Integr Comp Physiol 288:R651–R655

    CAS  Google Scholar 

  • Yang ZW, Wang J, Zheng T, Altura BT, Altura BM (2000) Low [Mg2 + ]o induces contraction of cerebral arteries: roles of tyrosine and mitogen-activated protein kinases. Am J Physiol Heart Circ Physiol 279:H185–H194

    CAS  PubMed  Google Scholar 

  • Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P, Lamperti E, Schreiber BM, Gavras H, Wagner DD, Ravid K (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Koupenova M, McCrann DJ, Kopeikina KJ, Kagan HM, Schreiber BM, Ravid K (2008) The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci USA 105: 792–796

    Article  CAS  PubMed  Google Scholar 

  • Zablocki JA, Wu L, Shryock J, Belardinelli L (2004) Partial A(1) adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). Curr Top Med Chem 4:839–854

    Article  CAS  PubMed  Google Scholar 

  • Zatta AJ, Headrick JP (2005) Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 144:576–587

    Article  CAS  PubMed  Google Scholar 

  • Zaza A, Rocchetti M, DiFrancesco D (1996) Modulation of the hyperpolarization-activated current (I(f)) by adenosine in rabbit sinoatrial myocytes. Circulation 94:734–741

    CAS  PubMed  Google Scholar 

  • Zhao Z, Makaritsis K, Francis CE, Gavras H, Ravid K (2000) A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim Biophys Acta 1500:280–290

    CAS  PubMed  Google Scholar 

  • Zhao TC, Hines DS, Kukreja RC (2001) Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol 280:H1278–H1285

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank would like to Luiz Belardinelli, M.D. for critical reading of the manuscript and his helpful comments. Also, we would like to acknowledge the support of NIH (HL-027339-SJM; HL-074001-RRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jamal Mustafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mustafa, S.J., Morrison, R.R., Teng, B., Pelleg, A. (2009). Adenosine Receptors and the Heart: Role in Regulation of Coronary Blood Flow and Cardiac Electrophysiology. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_6

Download citation

Publish with us

Policies and ethics