Skip to main content

Recent Developments in A2B Adenosine Receptor Ligands

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

A selective, high-affinity A2B adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A2BAR in inflammatory diseases and angiogenic diseases. Based on early A2BAR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: \({K}_{\mathrm{i}}(\mathrm{h{A}_{2B}})\;=\;2\,\mathrm{nM};\ {K}_{\mathrm{i}}({\mathrm{hA}}_{1})\;=\;403\,\mathrm{nM};\ {K}_{\mathrm{i}}(\mathrm{h{A}_{2A}})\;=\;503\,\mathrm{nM}\), and K i(hA3) = 570 nM), several groups have discovered second-generation A2BAR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A2BAR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, \({K}_{\mathrm{i}}(\mathrm{h{A}_{2B}}) = 22\,\mathrm{nM};\ {K}_{\mathrm{i}}({\mathrm{hA}}_{1}) = 1,940\,\mathrm{nM};\ {K}_{\mathrm{i}}(\mathrm{h{A}_{2A}})\,=\,3,280\); and K i(hA3) = 1, 070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (\({T}_{1/2}\,=\,4\,\mathrm{h}\) and F > 35% rat), and it is a functional antagonist at the A2BAR(K B = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A2BAR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A2BAR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine \(({K}_{\mathrm{i}}(\mathrm{h{A}_{2B}}) = 5.5\,\mathrm{nM};{K}_{\mathrm{i}}({\mathrm{hA}}_{1}) = 200\,\mathrm{nM};{K}_{\mathrm{i}}(\mathrm{h{A}_{2A},\ {A}_{3}})\,>\,1,000)\), that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A2BAR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A2BAR affinity and selectivity \(({K}_{\mathrm{i}}(\mathrm{h{A}_{2B}})\,=\,17\,\mathrm{nM};\ {K}_{\mathrm{i}}({\mathrm{hA}}_{1})\,>\) 1, 000 nM; K i(hA2A) > 2, 500; and K i(hA3) > 1, 000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A2BAR antagonist, 54 (OSIP339391 \({K}_{\mathrm{i}}(\mathrm{h{A}_{2B}})\,=\,0.5\,\mathrm{nM};\ {K}_{\mathrm{i}}({\mathrm{hA}}_{1})\,=\,37\,\mathrm{nM};\ {K}_{\mathrm{i}}(\mathrm{h{A}_{2A}})\,=\,328\); and \({K}_{\mathrm{i}}({\mathrm{hA}}_{3})\,=\,450\,\mathrm{nM})\) was discovered by the OSI group. The three highly selective, high-affinity A2BAR antagonists that have been selected for development should prove useful in subsequent clinical trials that will establish the role of the A2BARs in various disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Adenosine receptor

BALF:

Bronchoalveolar lavage fluid

BSMCs:

Bronchial smooth muscle cells

cAMP:

Cyclic adenosine monophosphate

CGS-21680:

2-[p-(2-Carboxyethyl)phenylethylamino]-5-N- ethylcarboxamidoad enosine

CPA:

N 6-Cyclopentyladenosine

DAG:

Diacylglycerol

HBECs:

Human bronchial epithelial cells

HRECs:

Human retinal endothelial cells

IL:

Interleukin

IP3:

(1,4,5)Inositol triphosphate

MCP-1:

Monocyte chemotactic protein-1

NECA:

5-N-Ethylcarboxamidoadenosine

NIDDM:

Noninsulin-dependent diabetesmellitus

NSAIDs:

Nonsteroidal antiinflammatory drugs

PK:

Pharmacokinetic

SAR:

Structure–activity relationship

VEGF:

Vascular endothelial growth factor

References

  • Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CE (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    Article  CAS  PubMed  Google Scholar 

  • Aghazadeh Tabrizi M, Baraldi PG, Preti D, Romagnoli R, Saponaro G, Baraldi S, Moorman Allan R, Zaid AN, Varani, Borea PA (2008) 1,3-Dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. Bioorg Med Chem 16:2419–2430

    Article  Google Scholar 

  • Aparici M, Nueda A, Beleta J, Prats N, Fernandez R, Miralpeix M (2006) A potent adenosine A2B receptor antagonist attenuates methacholine-induced bronchial hyperresponsiveness, mucus production and IgE levels in an allergic mouse model (Poster 162). In: CIA Symp, Malta, 5–10 May 2006

    Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Merighi S, Varani K, Borea PA, Spalluto G (2000) A3 adenosine receptor ligands: history and perspectives. Med Res Rev 20:103–128

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Varani K, Gessi S, Merighi S, Borea PA (2001) Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: a new pharmacological tool for the characterization of the human A3 adenosine receptor. Drug Dev Res 52:406–415

    Article  CAS  Google Scholar 

  • Baraldi PG, Cacciari B, Moro S, Spalluto G, Pastorin G, Da Ros T, Klotz KN, Varani K, Gessi S, Borea PA (2002) Synthesis, biological activity, and molecular modeling investigation of new pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as human A3 adenosine receptor antagonists. J Med Chem 45:770–780

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Aghazadeh Tabrizi M, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid AN, Moorman Allan R, Varani K, Gessi S, Merighi S, Borea PA (2004a) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem 47: 1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Aghazadeh Tabrizi M, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Moorman Allan R, Varani K, Borea PA (2004b) [3H]-MRE 2029-F20, a selective antagonist radioligand for the human A2B adenosine receptors. Bioorg Med Chem Lett 14:3607–3610

    Article  CAS  PubMed  Google Scholar 

  • Belardinelli L, Grant MB (2001) Method for identifying and using A2B adenosine receptor antagonists to mediate mammalian cell proliferation. WO Patent 01060350

    Google Scholar 

  • Campioni E, Costanzi S, Vittori S, Volpini R, Klotz KN, Cristalli G (1998) New substituted 9-alkylpurines as adenosine receptor ligands. Bioorg Med Chem 6:523–533

    Article  Google Scholar 

  • Carotti A, Cadavid MI, Centeno NB, Esteve C, Loza MI, Martinez A, Nieto R, Ravina E, Sanz F, Segarra V, Sotelo E, Stefanachi A, Vidal B (2006) Design, synthesis, and structure–activity relationships of 1-,3-,8-, and 9-substituted-9-deazaxanthines at the human A2B adenosine receptor. J Med Chem 49:282–299

    Article  CAS  PubMed  Google Scholar 

  • Castelhano AL, McKibben B, Steinig AG (2003) Pyrrololopyrimidine A2B selective antagonist compound, their synthesis and use. WO Patent 2003053361

    Google Scholar 

  • Cushley MJ, Tattersfield AE, Holgate ST (1984) Adenosine-induced bronchoconstriction in asthma: antagonism by inhaled theophylline. Am Rev Respir Dis 129:380–384

    CAS  PubMed  Google Scholar 

  • Driver AG, Kukoly CA, Ali S, Mustafa SJ (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148:91–97

    CAS  PubMed  Google Scholar 

  • Elzein E, Kalla R, Li X, Perry T, Parkhill E, Palle V, Varkhedkar V, Gimbel A, Zeng D, Lustig D, Leung K, Zablocki J (2006) Novel 1,3-dipropyl-8-(1-heteroarylmethyl-1H-pyrazol-4-yl)-xanthine derivatives as high affinity and selective A2B adenosine receptor antagonists. Bioorg Med Chem Lett 16:302–306

    Article  CAS  PubMed  Google Scholar 

  • Elzein E, Kalla RV, Li X, Perry T, Gimbel A, Zeng D, Lustig D, Leung K, Zablocki J (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J Med Chem 51:2267–2278

    Article  CAS  PubMed  Google Scholar 

  • Esteve C, Nueda A, Díaz JL, Beleta J, Cárdenas A, Lozoya E, Cadavid MI, Loza MI, Ryder H, Vidal B (2006) New pyrrolopyrimidin-6-yl benzenesulfonamides: potent A2B adenosine receptor antagonists. Bioorg Med Chem Lett 16:3642–3645

    Article  CAS  PubMed  Google Scholar 

  • Feoktistov I, Wells JN, Biaggioni I (1998) Adenosine A2B receptors as therapeutic targets. Drug Dev Res 45:198–206

    Article  CAS  Google Scholar 

  • Feoktistov I, Ryzhov S, Zhong H, Goldstein AE, Matafonov A, Zeng D, Biaggioni I (2004) Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44:649–654

    Article  CAS  PubMed  Google Scholar 

  • Fozard JR, McCarth C (2002) Adenosine receptor ligands as potential therapeutics in asthma. Curr Opin Investig Drugs 3:69–77

    CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Kloz K-N, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  Google Scholar 

  • Harada H, Asano O, Hoshino Y, Yoshikawa S, Matsukura M, Kabasawa Y, Niijima J, Kotake Y, Watanabe N, Kawata T, Inoue T, Horizoe T, Yasuda N, Minami H, Nagata K, Murakami M, Nagaoka J, Kobayashi S, Tanaka I, Abe S (2001a) 2-Alkynyl-8-aryl-9-methyladenines as novel adenosine receptor antagonists: Their synthesis and structure-activity relationships toward hepatic glucose production induced via agonism of the A2B receptor. J Med Chem 44:170–179

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Asano O, Kawata T, Inoue T, Horizoe T, Yasuda N, Nagata K, Murakami M, Nagaoka J, Kobayashi S, Tanaka I, Abe S (2001b) 2-Alkynyl-8-aryladenines possessing an amide moiety: their synthesis and structure-activity relationships of effects on hepatic glucose production induced via agonism of the A2B adesnosine receptor. Bioorg Med Chem 9:2709–2726

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Asano O, Miyazawa S, Yasuda N, Kabasawa Y, Ueda M, Yasuda M, Kotake Y (2003) Pyrimidone compounds and pharmaceutical compositions containing the same. WO 2003035640

    Google Scholar 

  • Harada H, Asano O, Yasuda N, Ueda M. Yasuda M, Miyazawa S (2004) 2-Aminopyridine compounds and thereof as drugs. US Patent 6750232

    Google Scholar 

  • Hayallah AM, Sandoval-Ramırez JS, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Müller CE (2002) 1,8-Disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem 45:1500–1510

    Article  CAS  PubMed  Google Scholar 

  • Holgate ST (2005) The Quintiles Prize Lecture 2004: the identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 145:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, IJzerman AP, Linden J (1999) 1,3-Dialkylxanthie derivatives having high potency as antagonists at human A2B adenosine receptors. Drug Dev Res 47:45–53

    Article  CAS  Google Scholar 

  • Kalla R, Perry T, Elzein E, Varkhedkar V, Li X, Ibrahim P, Palle V, Xiao D, Zablocki J (2004) A2B adenosine receptor antagonists. US Patent 6,825,349

    Google Scholar 

  • Kalla R, Elzein E, Marquart T, Perry T, Li X, Zablocki J (2005) A2B adenosine receptor antagonists. WO Patent 2005042534

    Google Scholar 

  • Kalla R, Elzein E, Perry T, Li X, Palle V, Varkhedkar V, Gimbel A, Maa T, Zeng D, Zablocki J (2006) Novel 1,3-disubstituted 8-(1-benzyl-1H-pyrazol-4-yl)xanthines: High affinity and selective A2B sdenosine receptor antagonists. J Med Chem 49:3682–3692

    Article  CAS  PubMed  Google Scholar 

  • Kalla R, Elzein E, Perry T, Li X, Gimbel A, Yang M, Zeng D, Zablocki J (2008) Selective, high affinity A2B adenosine receptor antagonists: N-1 monosubstituted 8-(pyrazol-4-yl)xanthines. Bioorg Med Chem Lett 18:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-C, Karton Y, Ji X-D, Melman N, Linden J, Jacobson KA (1999) Acyl hydrazide derivatives of a xanthine carboxylic congener (XCC) as selective antagonists at human A2B adenosine receptor. Drug Dev Res 47:178–188

    Article  CAS  Google Scholar 

  • Kim Y-C, Ji X-D, Melman N, Linden J, Jacobson KA (2000) Anilide derivatives of a 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A2B adenosine receptors. J Med Chem 43:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Kim S-A, Marshall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA (2002) Structure–activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem 45:2131–2138

    Article  CAS  PubMed  Google Scholar 

  • Kurukulasuriya R, Link JT, Madar DJ, Pei Z, Richards SJ, Rhode JJ, Souers AJ, Szczepakieicz BG (2003) Potential drug targets and progress towards pharmacologic inhibition of hepatic glucose production. Curr Med Chem 10:123–153

    CAS  PubMed  Google Scholar 

  • Lambertucci C, Campioni E, Costanzi G, Kachler S, Klotz KN, Volpini R, Cristalli G, Vittori S (2000) A bromine atom in C-8 position of 9-substituted adenines enhnces A2A. Drug Dev Res 50:67–74

    Google Scholar 

  • Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli, Zeng D (2007) Effect of a specific and selective A2B adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 320:1246–1251

    Article  CAS  PubMed  Google Scholar 

  • Pastorin G, Da Ros T, Spalluto G, Deflorian F, Moro S, Cacciari B, Baraldi PG, Gessi S, Varani K, Borea PA (2003) Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as adenosine receptor antagonists. Influence of the N5 substituent on the affinity at the human A3 and A2B adenosine receptor subtypes: a molecular modelling investigation. J Med Chem 46:4287–4296

    Article  CAS  PubMed  Google Scholar 

  • Stefanachi A, Nicolotti O, Leonetti F, Cellamare S, Campagna F, Loza MI, Brea JM, Mazza F, Gavuzzo E and Carotti A (2008) 1,3-Dialkyl-8-(hetero)aryl-9-OH-9-deazaxanthines as potent A2B adenosine receptor antagonists: design, synthesis, structure–affinity and structure–selectivity relationships. Bioorg Med Chem 16:9780–9789

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Steinig AG, Ma C, Song J-P, McKibben B, Castelhano AL, MacLennan SJ (2004) [3H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A2B receptors. Biochem Pharmacol 68:305–312

    Article  CAS  PubMed  Google Scholar 

  • Sun C-X, Zhong H, Mohsenin A, Morschi E, Chunn JL, Molina JG, Belardinelli L, Zeng D, Blackburn M (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116:2173–2182

    Article  CAS  PubMed  Google Scholar 

  • Vidal JB, Esteve TC (2005) Pyrimidin-2-amine derivates and their use as A2B adenosine receptor antagonists. WO Patent 2005040155

    Google Scholar 

  • Vidal JB, Esteve TC, Soca PL, Eastwood PR (2007a) Pyrazine derivatives useful as adenosine receptor antagonists. WO Patent 2007017096

    Google Scholar 

  • Vidal JB, Fonquerna PS, Eastwood PR, Aiguade BJ, Cardus FA, Carranco MI, Gonzalez RJ, Paredes AS (2007b) Imidazopyridine derivatives as A2B adenosine receptor antagonists. WO Patent 2007039297

    Google Scholar 

  • Vidal JB, NA, Esteve TC, Domenech T, Benito S, Reinoso RF, Pont M, Calbet M, Lopez R, Cadavid MI, Loza MI, Cardenas A, Godessart N, Beleta J, Warrellow G, Ryder H (2007c) Discovery and characterization of 4-(2-furyl)-N-pyridin-3-yl-4,5-bipyrimidin-2-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J Med Chem 50:2732–2736

    Article  CAS  PubMed  Google Scholar 

  • Volpini R, Costanzi S, Vittori S, Cristalli G, Klotz KN (2003) Medicinal chemistry and pharmacology of A2B adenosine receptors. Curr Top Med Chem 3:427–443

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Rieger JM, Thompson RD (2006) Pyridyl substituted xanthines. WO Patent 2006091896

    Google Scholar 

  • Yan L, Müller CE (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: toward the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 47:10311043

    Article  Google Scholar 

  • Zeng D, Maa T, Wang U, Feoktistov I, Biaggioni I, Belardinelli L (2003) Expression and function of A2B adenosine receptors in the U87MG tumor cells. Drug Dev Res 58:405–411

    Article  CAS  Google Scholar 

  • Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng D (2004) A2B adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol 30:118–125

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Belardinelli L, Maa T, Zeng D (2005) Synergy between A2B adenosine receptors andhypoxia in activating human lung fibroblasts. Am J Respir Cell Mol Biol 32:2–8

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Wu Y, Belardinelli L, Zeng D (2006) A2B adenosine receptors induce IL-19 from bronchial epithelial cells and results in TNF-alpha increase. Am J Respir Cell Mol Biol 35:587–592

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao V. Kalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalla, R.V., Zablocki, J., Tabrizi, M.A., Baraldi, P.G. (2009). Recent Developments in A2B Adenosine Receptor Ligands. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_4

Download citation

Publish with us

Policies and ethics