Skip to main content

Adenosine Receptor Ligands and PET Imaging of the CNS

  • Chapter
  • First Online:
Adenosine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

Advances in radiotracer chemistry have resulted in the development of novel molecular imaging probes for adenosine receptors (ARs). With the availability of these molecules, the function of ARs in human pathophysiology as well as the safety and efficacy of approaches to the different AR targets can now be determined. Molecular imaging is a rapidly growing field of research that allows the identification of molecular targets and functional processes in vivo. It is therefore gaining increasing interest as a tool in drug development because it permits the process of evaluating promising therapeutic targets to be stratified. Further, molecular imaging has the potential to evolve into a useful diagnostic tool, particularly for neurological and psychiatric disorders. This chapter focuses on currently available AR ligands that are suitable for molecular neuroimaging and describes first applications in healthy subjects and patients using positron emission tomography (PET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Adenosine monophosphate

AR:

Adenosine receptor

A1AR:

A1 adenosine receptor

A2AAR:

A2A adenosine receptor

A2BAR:

A2B adenosine receptor

A3AR:

A3 adenosine receptor

AD:

Alzheimer’s disease

BS–DMPX:

(E)-8-(3-Bromostyryl)-3,7-dimethyl- 1-propargylxanthine

Bq:

Becquerel

CNS:

Central nervous system

CPFPX:

8-Cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine

CSC:

(E)-8-Chlorostyryl-1,3,7-trimethylxanthine (8-chlorostyrylcaffeine)

D2R:

Dopamine D2 receptor

DMPX:

3,7-Dimethyl-1-propylxanthine

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

ED50 :

50% Efficient dose

EPDX:

2-Ethyl-8-dicyclopropylmethyl-3-propylxanthine

FDG:

2-Deoxy-2-fluoro-d-glucose

[18F]FE@SUPPY:

5-(2-[18F]fluoroethyl)-2,4-diethyl-3-(ethylsulfa- nylcarbonyl)-6-phenylpyridine-5-carboxylate

FR194921:

2-(1-Methyl-4-piperidinyl)-6-(2-phenylpyrazolo [1,5-a]pyridin-3-yl)-3(2H)-pyridazinone

IS–DMPX:

(E)-3,7-Dimethyl-8-(3-iodostyryl)-1- propargylxanthine

keV:

Kiloelectron volt

KF15372:

8-Dicyclopropylmethyl-1,3-dipropylxanthine

MPDX:

8-Dicyclopropylmethyl-1-methyl-3-propylxanthine

KF17837:

(E)-8-(3,4-Dimethoxystyryl)-1,3-dipropyl-7- methylxanthine

KF18446 (TMSX):

(E)-8-(3,4,5-Trimethoxystyryl)-1,3,7- trimethylxanthine

KF19631:

(E)-1,3-Diallyl-7-methyl-8-(3,4,5-trimethoxystyryl) xanthine

KF21213:

(E)-8-(2,3-Dimethyl-4-methoxystyryl)-1,3, 7-trimethylxanthine

KF21652:

3-[1-(6,7-Dimethoxyquinazolin-4-yl)piperidin-4-yl]-1, 6-dimethyl-2, 4(1H, 3H)-quinazolinedione

KW-6002 (istradefylline):

(E)1,3-Diethyl-8-(3,4-dimethoxystyryl)- 7-methylxanthine

PET:

Positron emission tomography

PD:

Parkinson’s disease

SCH442416:

5-Amino-7-(3-(4-methoxyphenyl)propyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine

SCH 58261:

7-(2-Phenylethyl)-5-amino-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine

SPECT:

Single-photon emission computed tomography

SUV:

Standard uptake value

Sv:

Sievert

References

  • Abbracchio MP, Cattabeni F (1999) Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N Y Acad Sci 890:79–92

    CAS  PubMed  Google Scholar 

  • Albasanz JL, Perez S, Barrachina M, Ferrer I, Martín M (2008) Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol 18:211–219

    CAS  PubMed  Google Scholar 

  • Angulo E, Casadó V, Mallol J, Canela EI, Viñals F, Ferrer I, Lluis C, Franco R (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Zhang SM, Hernán MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    CAS  PubMed  Google Scholar 

  • Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN (2003) Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 61:293–296

    CAS  PubMed  Google Scholar 

  • Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, Coenen HH, Zilles K (2003) In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 19:1760–1769

    PubMed  Google Scholar 

  • Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olsson RA, Coenen HH, Zilles K (2005) 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 46:450–454

    CAS  PubMed  Google Scholar 

  • Berne RM, Winn HR, Rubio R (1981) The local regulation of cerebral blood flow. Prog Cardiovasc Dis 24:243–260

    CAS  PubMed  Google Scholar 

  • Bier D, Holschbach MH, Wutz W, Olsson RA, Coenen HH (2006) Metabolism of the A1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans. Drug Metab Dispos 34:570–576

    CAS  PubMed  Google Scholar 

  • Blum T, Ermert J, Wutz W, Bier D, Coenen HH (2004) First no-carrier-added radioselenation of an adenosine-A1 receptor ligand. J Label Compd Radiopharm 47:415–427

    CAS  Google Scholar 

  • Boy C, Meyer PT, Kircheis G, Holschbach MH, Herzog H, Elmenhorst D, Kaiser HJ, Coenen HH, Häussinger D, Zilles K, Bauer A (2008) Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur J Nucl Med Mol Imaging 35:589–597

    CAS  PubMed  Google Scholar 

  • Brooks DJ, Doder M, Osman S, Luthra SK, Hirani E, Hume S, Kase H, Kilborn J, Martindill S, Mori A (2008) Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 62:671–681

    CAS  PubMed  Google Scholar 

  • Brundege JM, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39:353–391

    CAS  PubMed  Google Scholar 

  • Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, Hays SJ, Huang CC (1987) Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn–Schmiedeberg’s Arch Pharmacol 335:59–63

    Google Scholar 

  • Chaudhuri A, Cohen RZ, Larocque S (1998) Distribution of adenosine A1 receptors in primary visual cortex of developing and adult monkeys. Exp Brain Res 123:351–354

    CAS  PubMed  Google Scholar 

  • Correa M, Wisniecki A, Betz A, Dobson DR, O’Neill MF, O’Neill MJ, Salamone JD (2004) The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54

    CAS  PubMed  Google Scholar 

  • Deckert J, Abel F, Kunig G, Hartmann J, Senitz D, Maier H, Ransmayr G, Riederer P (1998) Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Lett 244:1–4

    CAS  PubMed  Google Scholar 

  • Dehnhardt M, Palm C, Vieten A, Bauer A, Pietrzyk U (2007) Quantifying the A1AR distribution in peritumoral zones around experimental F98 and C6 brain tumours. J Neurooncol 85:49–63

    CAS  PubMed  Google Scholar 

  • Dirnagl U, Niwa K, Lindauer U, Villringer A (1994) Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Physiol 267:H296–H301

    CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    CAS  PubMed  Google Scholar 

  • Elmenhorst D, Meyer PT, Matusch A, Winz OH, Zilles K, Bauer A (2007a) Test-retest stability of cerebral A1 adenosine receptor quantification using [18F]CPFPX and PET. Eur J Nucl Med Mol Imaging 34:1061–1070

    CAS  PubMed  Google Scholar 

  • Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007b) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a [18F]CPFPX PET study. J Neurosci 27:2410–2415

    CAS  PubMed  Google Scholar 

  • Fastbom J, Pazos A, Probst A, Palacios JM (1986) Adenosine A1-receptors in human brain: characterization and autoradiographic visualization. Neurosci Lett 65:127–132

    CAS  PubMed  Google Scholar 

  • Ferré S, Fuxe K (1992) Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 594:124–130

    PubMed  Google Scholar 

  • Franklin PH, Zhang G, Tripp ED, Murray TF (1989) Adenosine A1 receptor activation mediates suppression of ( − )bicuculline methiodide-induced seizures in rat prepiriform cortex. J Pharmacol Exp Ther 251:1229–1236

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA, Schwabe U, Williams M (1997) Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 18:79–82

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83–133

    CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, Mori Y, Ishiwata K (2003) Imaging of adenosine A1 receptors in the human brain by positron emission tomography with [11C]MPDX. Ann Nucl Med 17:511–515

    CAS  PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, Mori Y, Ishiwata K (2005) Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1–11C-methyl-3-propylxanthine. J Nucl Med 46:32–37

    PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, Ishiwata K (2008) Adenosine A1 receptors using 8-dicyclopropylmethyl-1-[11C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 22:841–847

    PubMed  Google Scholar 

  • Furuta R, Ishiwata K, Kiyosawa M, Ishii S, Saito N, Shimada J, Endo K, Suzuki F, Senda M (1996) Carbon-11-labeled KF15372: a potential central nervous system adenosine A1 receptor ligand. J Nucl Med 37:1203–1207

    CAS  PubMed  Google Scholar 

  • Fuxe K, Ferré S, Snaprud P, von Euler G, Jahansson B, Ferdholm B (1993) Antagonistic A2A∕D2 receptor interaction in the striatum as a basis for adenosine/dopamine interactions in the central nervous system. Drug Dev Res 28:374–380

    CAS  Google Scholar 

  • Glass M, Faull RL, Dragunow M (1996) Localization of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine A1 receptors. Brain Res 710:79–91

    CAS  PubMed  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD (2003) Randomized trial of the adenosine A2A receptor antagonist istradefylline in advanced PD. Neurology 61:297–303

    CAS  PubMed  Google Scholar 

  • Hayaishi O (1999) Prostaglandin D2 and sleep: a molecular genetic approach. J Sleep Res 8(Suppl 1):60–64

    PubMed  Google Scholar 

  • Herzog H, Elmenhorst D, Winz O, Bauer A (2008) Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET. Eur J Nucl Med Mol Imaging 35:1499–1506

    CAS  PubMed  Google Scholar 

  • Hirani E, Gillies J, Karasawa A, Shimada J, Kase H, Opacka-Juffry J, Osman S, Luthra SK, Hume SP, Brooks DJ (2001) Evaluation of [4-O-methyl-11C]KW-6002 as a potential PET ligand for mapping central adenosine A2A receptors in rats. Synapse 42:164–176

    CAS  PubMed  Google Scholar 

  • Holschbach MH, Olsson RA (2002) Applications of adenosine receptor ligands in medical imaging by positron emission tomography. Curr Pharm Des 8:2345–2352

    CAS  PubMed  Google Scholar 

  • Holschbach MH, Fein T, Krummeich C, Lewis RG, Wutz W, Schwabe U, Unterlugauer D, Olsson RA (1998) A1 adenosine receptor antagonists as ligands for positron emission tomography (PET) and single-photon emission tomography (SPET). J Med Chem 41:555–563

    CAS  PubMed  Google Scholar 

  • Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, Palm B, Coenen HH (2002) Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A1-adenosine receptor antagonist for in vivo imaging. J Med Chem 45:5150–5156

    CAS  PubMed  Google Scholar 

  • Hunter JC (2006) SCH 420814: a novel adenosine A2A antagonist. Exploring Parkinson’s disease and beyond. In: Targeting Adenosine A2A Receptors in Parkinson’s Disease and Other CNS Disorders (meeting), Boston, MA, 17–19 May 2006

    Google Scholar 

  • Ishiwata K, Furuta R, Shimada J, Ishii S, Endo K, Suzuki F, Senda M (1995) Synthesis and preliminary evaluation of [11C]KF15372, a selective adenosine A1 antagonist. Appl Radiat Isotopes 46:1009–1013

    CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Toyama H, Sakiyama Y, Koike N, Ishii S, Oda K, Endo K, Suzuki F, Senda M (1996) Synthesis and preliminary evaluation of [11C]KF17837, a selective adenosine A2A antagonist. Appl Radiat Isotopes 47:507–511

    CAS  Google Scholar 

  • Ishiwata K, Sakiyama Y, Sakiyama T, Shimada J, Toyama H, Oda K, Suzuki F, Senda M (1997) Myocardial adenosine A2a receptor imaging of rabbit by PET with [11C]KF17837. Ann Nucl Med 11:219–225

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, Tanaka A, Endo K, Suzuki F, Senda M (2000a) 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 41:345–354

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J, Nonaka H, Tanaka A, Suzuki F, Senda M (2000b) Further characterization of a CNS adenosine A2A receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 14:81–89

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J, Wang W, Ishii K, Tanaka A, Suzuki F, Senda M (2000c) Search for PET probes for imaging the globus pallidus studied with rat brain ex vivo autoradiography. Ann Nucl Med 14:461–466

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Shimada J, Wang WF, Harakawa H, Ishii S, Kiyosawa M, Suzuki F, Senda M (2000d) Evaluation of iodinated and brominated [11C]styrylxanthine derivatives as in vivo radioligands mapping adenosine A2A receptor in the central nervous system. Ann Nucl Med 14:247–253

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Takai H, Nonaka H, Ishii S, Simada J, Senda M (2001) Synthesis and preliminary evaluation of a carbon-11-labeled adenosine transporter blocker [11C]KF21562. Nucl Med Biol 28:281–285

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Nariai T, Kimura Y, Oda K, Kawamura K, Ishii K, Senda M, Wakabayashi S, Shimada J (2002a) Preclinical studies on [11C]MPDX for mapping adenosine A1 receptors by positron emission tomography. Ann Nucl Med 16:377–382

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Ogi N, Hayakawa N, Oda K, Nagaoka T, Toyama H, Suzuki F, Endo K, Tanaka A, Senda M (2002b) Adenosine A2A receptor imaging with [11C]KF18446 PET in the rat brain after quinolinic acid lesion: comparison with the dopamine receptor imaging. Ann Nucl Med 16:467–475

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Shimada J, Ishii K, Suzuki F (2002c) Assessment of adenosine A2A receptors with PET as a new diagnostic tool for neurological disorders. Drugs Future 27:569–576

    CAS  Google Scholar 

  • Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K (2003a) Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 17:457–462

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K (2003b) Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 17:205–211

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Mizuno M, Kimura Y, Kawamura K, Oda K, Sasaki T, Nakamura Y, Muraoka I, Ishii K (2004) Potential of [11C]TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography. Nucl Med Biol 31:949–956

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K (2005a) First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 55:133–136

    CAS  PubMed  Google Scholar 

  • Ishiwata K, Tsukada H, Kimura Y, Kawamura K, Harada N, Hendrikse NH (2005b) In vivo evaluation of [11C]TMSX and [11C]KF21213 for mapping adenosine A2A receptors: brain kinetics in the conscious monkey and P-glycoprotein modulation in the mouse brain. In: 22nd Int Symp on Cerebral Blood Flow, Metabolism, and Function/7th Int Conf on Quantification of Brain Function with PET, Amsterdam, Netherlands, 7–11 June 2005

    Google Scholar 

  • Ishiwata K, Kimura Y, de Vries EFJ, Elsinga PH (2008) PET tracers for mapping adenosine receptors as probes for diagnosis of CNS disorders. CNS Agents Med Chem 7:57–77

    Google Scholar 

  • Jaarsma D, Sebens JB, Korf J (1991) Reduction of adenosine A1-receptors in the perforant pathway terminal zone in Alzheimer hippocampus. Neurosci Lett 121:111–114

    CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    CAS  PubMed  Google Scholar 

  • Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49:650–658

    CAS  PubMed  Google Scholar 

  • Kase H, Aoyama S, Ichimura M, Ikeda K, Ishii A, Kanda T, Koga K, Koike N, Kurokawa M, Kuwana Y, Mori A, Nakamura J, Nonaka H, Ochi M, Saki M, Shimada J, Shindou T, Shiozaki S, Suzuki F, Takeda M, Yanagawa K, Richardson PJ, Jenner P, Bedard P, Borrelli E, Hauser RA, Chase TN; KW-6002 US-001 Study Group (2003) Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson’s disease. Neurology 61(Suppl 6):S97–S100

    CAS  PubMed  Google Scholar 

  • Kawamura K, Ishiwata K (2004) Improved synthesis of [11C]SA4503, [11C]MPDX and [11C]TMSX by use of [11C]methyl triflate. Ann Nucl Med 18:165–168

    CAS  PubMed  Google Scholar 

  • Kimura Y, Ishii K, Fukumitsu N, Oda K, Sasaki T, Kawamura K, Ishiwata K (2004) Quantitative analysis of adenosine A1 receptors in human brain using positron emission tomography and [1-methyl-11C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine. Nucl Med Biol 31:975–981

    CAS  PubMed  Google Scholar 

  • Kiyosawa M, Ishiwata K, Noguchi J, Endo K, Wang WF, Suzuki F, Senda M (2001) Neuroreceptor bindings and synaptic activity in visual system of monocularly enucleated rat. Jpn J Ophthalmol 45:264–269

    CAS  PubMed  Google Scholar 

  • Koga K, Kurokawa M, Ochi M, Nakamura J, Kuwana Y (2000) Adenosine A2A receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 408:249–255

    CAS  PubMed  Google Scholar 

  • Kuroda S, Takamura F, Tenda Y, Itani H, Tomishima Y, Akahane A, Sakane K (2001) Design, synthesis and biological evaluation of a novel series of potent, orally active adenosine A1 receptor antagonists with high blood–brain barrier permeability. Chem Pharm Bull (Tokyo) 49:988–998

    CAS  Google Scholar 

  • Landolt HP (2008) Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol 75:2070–2079

    CAS  PubMed  Google Scholar 

  • Lehel SZ, Horvath G, Boros I, Mikecz P, Marian T, Szentmiklosi AJ, Tron L (2000) Synthesis of 5-N-(2-[18F]Fluoroethyl)-carboxamidoadenosine: a promising tracer for investigation of adenosine receptor system by PET technique. J Label Compd Radiopharm 43:807–815

    CAS  Google Scholar 

  • Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX): a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn–Schmiedeberg’s Arch Pharmacol 336:204–210

    Google Scholar 

  • Maemoto T, Tada M, Mihara T, Ueyama N, Matsuoka H, Harada K, Yajima T, Shirakawa K, Kuroda S, Akihane A, Iwashita A, Matsuoka N, Mutoh S (2004) Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J Pharmacol Sci 96:42–52

    CAS  PubMed  Google Scholar 

  • Marian T, Boros I, Lengyel Z, Balkay L, Horvath G, Emri M, Sarkadi E, Szentmiklosi AJ, Fekete I, Tron L (1999) Preparation and primary evaluation of [11C]CSC as a possible tracer for mapping adenosine A2A receptors by PET. Appl Radiat Isotopes 50:887–893

    CAS  Google Scholar 

  • Marino MJ, Valenti O, Conn PJ (2003) Glutamate receptors and Parkinson’s disease: opportunities for intervention. Drugs Aging 20:377–397

    CAS  PubMed  Google Scholar 

  • Mathews WB, Nakamoto Y, Abraham EH, Scheffel U, Hilton J, Ravert HT, Tatsumi M, Rauseo PA, Traughber BJ, Salikhova AY, Dannals RF, Wahl RL (2005) Synthesis and biodistribution of [11C]adenosine 5-monophosphate ([11C]AMP). Mol Imaging Biol 7:203–208

    PubMed  Google Scholar 

  • Matsuya T, Takamatsu H, Murakami Y, Noda A, Ichise R, Awaga Y, Nishimura S (2005) Synthesis and evaluation of [11C]FR194921 as a nonxanthine-type PET tracer for adenosine A1 receptors in the brain. Nucl Med Biol 32:837–844

    CAS  PubMed  Google Scholar 

  • Matusch A, Meyer PT, Bier D, Holschbach MH, Woitalla D, Elmenhorst D, Winz OH, Zilles K, Bauer A (2006) Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol 33:891–898

    CAS  PubMed  Google Scholar 

  • Meyer PT, Bier D, Holschbach MH, Cremer M, Tellmann L, Bauer A (2003) Image of the month. In vivo imaging of rat brain A1 adenosine receptor occupancy by caffeine. Eur J Nucl Med Mol Imaging 30:1440

    PubMed  Google Scholar 

  • Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, Zilles K, Bauer A (2004) Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 24:323–333

    CAS  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, Zilles K, Bauer A (2005a) Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage 24:1192–1204

    PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Zilles K, Bauer A (2005b) Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 55:212–223

    CAS  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A (2006) A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 32:1100–1105

    PubMed  Google Scholar 

  • Mishina M, Ishii K, Kitamura S, Kimura Y, Naganawa M, Hashimoto M, Suzuki M, Oda K, Kobayashi S, Katayama, Y Ishiwata K (2006) Distribution of adenosine A2A receptors in de novo Parkinson’s disease using TMSX PET: a preliminary study (Poster 44). In: Targeting Adenosine A2A Receptors in Parkinson’s Disease and Other CNS Disorders (meeting), Boston, MA, 17–19 May 2006

    Google Scholar 

  • Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Kitamura S, Katayama Y, Ishii K (2007) Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 61:778–784

    CAS  PubMed  Google Scholar 

  • Mizuno M, Kimura K, Tokizawa K, Ishii K, Oda K, Sasaki T, Nakamura Y, Muraoka I, Ishiwata K (2005) Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance trained men: a [11C]TMSX PET study. Nucl Med Biol 32:831–836

    CAS  PubMed  Google Scholar 

  • Moraidis I, Bingmann D (1994) Epileptogenic actions of xanthines in relation to their affinities for adenosine A1 receptors in CA3 neurons of hippocampal slices (guinea pig). Brain Res 640:140–145

    CAS  PubMed  Google Scholar 

  • Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, Galli-Kienle M, Fazio F (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413

    CAS  PubMed  Google Scholar 

  • Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawlowski M, Suzuki F, Sandoval-Ramírez J (1997) Synthesis and structure-activity relationship of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 40:4396–4405

    PubMed  Google Scholar 

  • Müller CE, Sandoval-Ramírez J, Schobert U, Geis U, Frobenius W, Klotz KN (1998) 8-(Sulfosytryl)xanthines; water-soluble A2A-selective adenosine receptor antagonists. Bioorg Med Chem 6:707–719

    PubMed  Google Scholar 

  • Naganawa M, Kimura Y, Mishina M, Manabe Y, Chihara K, Oda K, Ishii K, Ishiwata K (2007) Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography. Eur J Nucl Med Mol Imaging 34:679–687

    CAS  PubMed  Google Scholar 

  • Naganawa M, Kimura Y, Yano J, Mishina M, Yanagisawa M, Ishii K, Oda K, Ishiwata K (2008) Robust estimation of the arterial input function for Logan plots using an intersectional searching algorithm and clustering in positron emission tomography for neuroreceptor imaging. Neuroimage 40:26–34

    PubMed  Google Scholar 

  • Nariai T, Shimada Y, Ishiwata K, Nagaoka T, Shimada J, Kuroiwa T, Ono K, Ohno K, Hirakawa K, Senda M (2003) PET imaging of adenosine A1 receptors with 11C-MPDX as an indicator of severe cerebral ischemic insult. J Nucl Med 44:1839–1844

    CAS  PubMed  Google Scholar 

  • Noguchi J, Ishiwata K, Furuta R, Simada J, Kiyosawa M, Ishii S, Endo K, Suzuki F, Senda M (1997) Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 24:53–59

    CAS  PubMed  Google Scholar 

  • Noguchi J, Ishiwata K, Wakabayashi S, Nariai T, Shumiya S, Ishii S, Toyama H, Endo K, Suzuki F, Senda M (1998) Evaluation of carbon-11-labeled KF17837: a potential CNS adenosine A2a receptor ligand. J Nucl Med 39:498–503

    CAS  PubMed  Google Scholar 

  • Nonaka Y, Shimada J, Nonaka H, Koike N, Aoki N, Kobayashi H, Kase H, Yamaguchi K, Suzuki F (1993) Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine. J Med Chem 36:3731–3733

    CAS  PubMed  Google Scholar 

  • Nonaka H, Ichimura M, Takeda M, Nonaka Y, Shimada J, Suzuki F, Yamakuchi K, Kase A (1994) KF17837 ((E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine) a potent and selective adenosine A2 receptor antagonist. Eur J Pharmcol 267:335–341

    CAS  Google Scholar 

  • Olah ME, Stiles GL (2000) The role of receptor structure in determining adenosine receptor activity. Pharmacol Ther 85:55–75

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T (1999) Adenosine in sleep and wakefulness. Ann Med 31:125–129

    CAS  PubMed  Google Scholar 

  • Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225–235

    CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sebastiao AM, de Mendonca A (2003) Participation of adenosine receptors in neuroprotection. Drug News Perspect 16:80–86

    CAS  PubMed  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679

    CAS  PubMed  Google Scholar 

  • Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP (2001) Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett 297:211–215

    CAS  PubMed  Google Scholar 

  • Schubert P, Ogata T, Marchini C, Ferroni S, Rudolphi K (1997) Protective mechanisms of adenosine in neurons and glial cells. Ann N Y Acad Sci 825:1–10

    CAS  PubMed  Google Scholar 

  • Schubert P, Ogata T, Marchini C, Ferroni S (2001) Glia-related pathomechanisms in Alzheimer’s disease: a therapeutic target? Mech Ageing Dev 123:47–57

    CAS  PubMed  Google Scholar 

  • Schwierin B, Borbély AA, Tobler I (1996) Effects of N 6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J Pharmacol 300:163–171

    CAS  PubMed  Google Scholar 

  • Seale TW, Abla KA, Shamim MT, Carney JM, Daly JW (1988) 3,7-Dimethyl-1-propargylxanthine: a potent and selective in vivo antagonist of adenosine analogs. Life Sci 43:1671–1684

    CAS  PubMed  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H, Karasawa A, Mizumoto H, Ohno T, Kubo K, Ishii A (1991) 8-(Dicyclopropylmethyl)-1,3-dipropylxanthine: a potent and selective adenosine A1 antagonist with renal protective and diuretic activities. J Med Chem 34:466–469

    CAS  PubMed  Google Scholar 

  • Shimada J, Suzuki J, Nonaka H, Ishii A, Ichikawa S (1992) (E)-1,3-Dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthine: potent and selective adenosine A2 antagonists. J Med Chem 35:2342–2345

    CAS  PubMed  Google Scholar 

  • Shimada Y, Ishiwata K, Kiyosawa M, Nariai T, Oda K, Toyama H, Suzuki F, Ono K, Senda M (2002) Mapping adenosine A1 receptors in the cat brain by positron emission tomography with [11C]MPDX. Nucl Med Biol 29:29–37

    CAS  PubMed  Google Scholar 

  • Stone-Elander S, Thorell JO, Eriksson L, Fredholm BB, Ingvar M (1997) In vivo biodistribution of [N-11C-methyl]KF 17837 using 3-D-PET: evaluation as a ligand for the study of adenosine A2A receptors. Nucl Med Biol 24:187–191

    CAS  PubMed  Google Scholar 

  • Suzuki F, Ishiwata K (1998) Selective adenosine antagonists for mapping central nervous system adenosine receptors with positron emission tomography: Carbon-11 labeled KF15372 (A1) and KF17837 (A2a). Drug Dev Res 45:312–323

    CAS  Google Scholar 

  • Suzuki F, Shimada J, Mizumoto H, Karasawa A, Kubo K, Nonaka H, Ishii A, Kawakita T (1992) Adenosine A1 antagonists. 2. Structure–activity relationships on diuretic activities and protective effects against acute renal failure. J Med Chem 35:3066–3075

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335

    CAS  PubMed  Google Scholar 

  • Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, Varani K, Monopoli A, Matarrese M, Carpinelli A, Magni F, Kienle MG, Fazio F (2000) Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A2A receptor system using positron emission tomography. J Med Chem 43:4359–4362

    CAS  PubMed  Google Scholar 

  • Ulas J, Brunner LC, Nguyen L, Cotman CW (1993) Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 52:843–854

    CAS  PubMed  Google Scholar 

  • Virus RM, Ticho S, Pilditch M, Radulovacki M (1990) A comparison of the effects of caffeine, 8-cyclopentyltheophylline, and alloxazine on sleep in rats. Possible roles of central nervous system adenosine receptors. Neuropsychopharmacology 3:243–249

    CAS  Google Scholar 

  • Wadsak W, Mien LK, Shanab K, Ettlinger DE, Haeusler D, Sindelar K, Lanzenberger RR, Spreitzer H, Viernstein H, Keppler BK, Dudczak R, Kletter K, Mitterhauser M (2008) Preparation and first evaluation of [18F]FE@SUPPY: a new PET tracer for the adenosine A3 receptor. Nucl Med Biol 35:61–66

    CAS  PubMed  Google Scholar 

  • Wakabayashi S, Nariai T, Ishiwata K, Nagaoka T, Hirakawa K, Oda K, Sakiyama Y, Shumiya S, Toyama H, Suzuki F, Senda M (2000) A PET study of adenosine A1 receptor in anesthetized monkey brain. Nucl Med Biol 27:401–406

    CAS  PubMed  Google Scholar 

  • Wang WF, Ishiwata K, Nonaka H, Ishii S, Kiyosawa M, Shimada J, Suzuki F, Senda M (2000) Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A2A receptors with positron emission tomography. Nucl Med Biol 27:541–546

    CAS  PubMed  Google Scholar 

  • Wang WF, Ishiwata K, Kiyosawa M, Shimada J, Senda M, Mochizuki M (2003) Adenosine A1 and benzodiazepine receptors and glucose metabolism in the visual structures of rats monocularly deprived by enucleation or eyelid suture at a sensitive period. Jpn J Ophthalmol 47:182–190

    CAS  PubMed  Google Scholar 

  • Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310

    CAS  PubMed  Google Scholar 

  • Yanik G, Radulovacki M (1987) REM sleep deprivation up-regulates adenosine A1 receptors. Brain Res 402:362–364

    CAS  PubMed  Google Scholar 

  • Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996a) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2A adenosine receptor antagonist. J Pharmacol Exp Ther 276:398–404

    CAS  PubMed  Google Scholar 

  • Zocchi C, Ongini E, Ferrara S, Baraldi PG, Dionisotti S (1996b) Binding of the radioligand [3H]-SCH 58261, a new non-xanthine A2A adenosine receptor antagonist, to rat striatal membranes. Br J Pharmacol 117:1381–1386

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, A., Ishiwata, K. (2009). Adenosine Receptor Ligands and PET Imaging of the CNS. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_19

Download citation

Publish with us

Policies and ethics