Advertisement

Volumetric Ultrasound Panorama Based on 3D SIFT

  • Dong Ni
  • Yingge Qu
  • Xuan Yang
  • Yim Pan Chui
  • Tien-Tsin Wong
  • Simon S. M. Ho
  • Pheng Ann Heng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)

Abstract

The reconstruction of three-dimensional (3D) ultrasound panorama from multiple ultrasound volumes can provide a wide field of view for better clinical diagnosis. Registration of ultrasound volumes has been a key issue for the success of this panoramic process. In this paper, we propose a method to register and stitch ultrasound volumes, which are scanned by dedicated ultrasound probe, based on an improved 3D Scale Invariant Feature Transform (SIFT) algorithm. We propose methods to exclude artifacts from ultrasound images in order to improve the overall performance in 3D feature point extraction and matching. Our method has been validated on both phantom and clinical data sets of human liver. Experimental results show the effectiveness and stability of our approach, and the precision of our method is comparable to that of the position tracker based registration.

Keywords

Scale Invariant Feature Transform Ultrasound Volume Scale Invariant Feature Transform Feature Matched Feature Point Matched Keypoints 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gee, A., Treece, G., Prager, R., Cash, C., Berman, L.: Rapid registration for wide field of view freehand three-dimensional ultrasound. IEEE Trans. Med. Imaging 22(11), 1344–1357 (2003)CrossRefGoogle Scholar
  2. 2.
    Poon, T., Rohling, R.: Three-dimensional extended field-of-view ultrasound. Ultrasound in Medicine and Biology 32(3), 357–369 (2003)CrossRefGoogle Scholar
  3. 3.
    Wachinger, C., Wein, W., Navab, N.: Three-dimensional ultrasound mosaicing. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 327–335. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. II: 2169–2178 (2006)Google Scholar
  6. 6.
    Brown, M., Lowe, D.: Recognising panoramas. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1218–1225 (2003)Google Scholar
  7. 7.
    Chen, J., Tian, J.: Rapid multi-modality preregistration based on sift descriptor. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1437–1440 (2006)Google Scholar
  8. 8.
    Moradi, M., Abolmaesoumi, P., Mousavi, P.: Deformable registration using scale space keypoints. In: SPIE Medical Imaging, vol. 6144, pp. 791–798 (2006)Google Scholar
  9. 9.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Lienhart, R., Prasad, A.R., Hanjalic, A., Choi, S., Bailey, B.P., Sebe, N. (eds.) ACM Multimedia, pp. 357–360. ACM Multimedia, New York (2007)Google Scholar
  10. 10.
    Penney, G., Blackall, J., Hamady, M., Sabharwal, T., Adam, A., Hawkes, D.: Registration of freehand 3d ultrasound and magnetic resonance liver images. Medical Image Analysis 8, 81–91 (2004)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Brady, M., Smith, S.M.: Segmentation of brain mr images through a hidden markov random field model and the expectation maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  12. 12.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dong Ni
    • 1
  • Yingge Qu
    • 1
  • Xuan Yang
    • 1
  • Yim Pan Chui
    • 1
  • Tien-Tsin Wong
    • 1
  • Simon S. M. Ho
    • 2
  • Pheng Ann Heng
    • 1
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong SARChina
  2. 2.Union HospitalHong Kong SARChina

Personalised recommendations