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Abstract. The reconstruction of three-dimensional (3D) ultrasound
panorama from multiple ultrasound volumes can provide a wide field
of view for better clinical diagnosis. Registration of ultrasound volumes
has been a key issue for the success of this panoramic process. In this
paper, we propose a method to register and stitch ultrasound volumes,
which are scanned by dedicated ultrasound probe, based on an improved
3D Scale Invariant Feature Transform (SIFT) algorithm. We propose
methods to exclude artifacts from ultrasound images in order to improve
the overall performance in 3D feature point extraction and matching.
Our method has been validated on both phantom and clinical data sets
of human liver. Experimental results show the effectiveness and stability
of our approach, and the precision of our method is comparable to that
of the position tracker based registration.

1 Introduction

Panoramic imaging is one of the key technologies used in widening the field of
view of medical ultrasound images for clinical diagnosis and measurement. 2D
ultrasound panorama has been prevalent in routine clinical practices. Over the
past few years, 3D ultrasound has been popular, and some research work on 3D
ultrasound panorama has been conducted accordingly. Gee et al. [1] proposed
an algorithm for the alignment of multiple freehand 3D ultrasound sweeps. An
intensity based registration method was performed on a single dividing plane
between two sweeps instead of on the entire overlapping region to improve the
registration speed. Poon et al. [2] proposed a system to create a mosaic view from
a set of ultrasound volumes acquired from a dedicated 3D probe, which provided
higher imaging resolution in the elevation direction than a freehand probe. Two
block-based registration methods were developed to correct the misalignment
based on measurements obtained from position trackers. Wachinger et al. [3]
focused on the global registration strategy among multiple ultrasound volumes.
Unfortunately, intensity-based algorithms including sum of squared differences,
normalized cross-correlation, mutual information, and correlation-ratio may not
perform well on ultrasound data due to the low signal to noise ratio and the
existence of shadows, speckles and other noises in ultrasound data. On the other
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hand, position tracker based registration methods may not always be well-suited
to routine clinical use, since the trackers may be affected by metals (for magnetic
sensors) or sight occlusions (for optical sensors).

In addition to the noisiness of ultrasound images, there are other problems
which make the registration of ultrasound volumes difficult. Since the ultrasound
probe has to be arbitrarily oriented during the acquisition of multiple volumes,
such variation of rotation imposes a great challenge to traditional registration
methods in feature matching. Besides, the intensity of the same structure may
differ in multiple ultrasound volumes obtained under different scan angles, and
this affects the registration accuracy as well. Recently, SIFT in 2D space has
been successfully applied to object recognition [4], point tracking [5], panorama
creation [6], etc. Chen et al. [7] utilized SIFT for rapid pre-registration of multi-
modality medical images. Moradi et al. [8] applied SIFT and a B-spline based
interpolation technique for registering elastically deformed MRI and ultrasound
images. Scovanner et al. [9] proposed a 3D SIFT descriptor for video analysis, and
recognized actions based on the similarity of their feature representations. SIFT
features are invariant to rotation and provide robust feature matching across
a substantial range of addition of noise and change in illumination (intensity).
This motivates us to apply SIFT based registration to ultrasound data.

In this paper, we adopt a modified 3D SIFT algorithm to create 3D ultrasound
panorama. We first pre-process the ultrasound data to remove the artifacts in
the ultrasound volume. Then 3D feature points are detected from multiple ul-
trasound volumes, and described as 3D SIFT features. Finally these features are
matched for stitching multiple ultrasound volumes to form panorama.

2 Method

2.1 Ultrasound Preprocessing

An inherent characteristic of ultrasound imaging is the presence of shadows and
speckles. Since the contact between a dedicated 3D probe and skin is not as
good as that using a 2D probe, some of the emitted echoes are attenuated by air
resulting in some large dark regions in the image. These artifacts may greatly
affect the detection and matching of feature points. Therefore it is essential to
remove them before registration. For speckle reduction, a well-known technique

(a) (b)

Fig. 1. (a) the original ultrasound image, (b) the ultrasound mask generated from (a)
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is to low-pass filter the image, e.g. by a Gaussian filter [10]. Since a Gaussian
filter has been used in the SIFT algorithm, speckles are reduced effectively. The
removal of shadows makes use of the fact that shadow is mainly caused by a
loss of signal along the direction of the beam, due to strong acoustic reflection.
We scan the ultrasound image along the echo direction from the bottom to
the transducer surface. The image is labeled as shadows if certain threshold
is reached. Large dark regions are segmented and removed using the Hidden
Markov Random Field Model and the Expectation-Maximization algorithm [11].
The results of these two steps are combined to generate a ultrasound mask
(Figure 1), which will be used in the process of feature detection.

2.2 3D Feature Detection and Descriptor Construction

In this subsection, we discuss the modified 3D SIFT approach.

Detection of 3D Keypoints. To detect keypoints efficiently, a Difference of
Gaussian (DoG) scale-space is first built based on the original volume data [4].
Specifically, an input volume I(x, y, z) is first convolved with a 3D Gaussian filter
G(x, y, z, kσ) of different scale, kσ, to obtain the scale space L(x, y, z, kσ) i.e.,

L(x, y, z, kσ) = G(x, y, z, kσ) ∗ I(x, y, z). (1)

Then the difference of Gaussian (DoG) volumes is taken as:

D(x, y, z, kjσ) = L(x, y, z, kiσ) − L(x, y, z, kjσ) (2)

Figure 2(a) shows the construction process. The left column shows the volume
pyramid, and each level is created by convolving the original volume with a

Fig. 2. (a) Volume pyramid: each level is created by convolving the original volume
with Gaussian of various scale, and to generate DoG volumes from adjacent scales. (b)
An extremum (in black) is the maximum or minimum of its 80 neighbors (in grey). (c)
Construction of 3D SIFT descriptor. The 3D gradient orientation is shown (right).
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Gaussian of scale σ, kσ, k2σ and so on. The right column shows the generated
DoG from the difference of neighboring filtered volume on multi-scales.

Keypoint candidates are taken as the local maxima/minima of the DoG scale
space D(x, y, z, σ). To achieve this, each sample point is compared to its 80
neighbors, where 26 neighbors in the current volume, and each 27 neighbors in
the scale above and below, as shown in Figure 2(b). A keypoint candidate is
selected only if it is larger than all of its neighbors or smaller than all of them. If
the position of the keypoint candidate is outside the ultrasound mask generated
in the previous step, this candidate is eliminated. The next step is to eliminate
the false candidates with low contrast, or those poorly localized along an edge.
Edge responses in 3D space can be measured by a 3 × 3 Hessian matrix H =
(Dij)3×3), which describes the curvatures at the keypoint in each 3D sub-plane,
where Dij is the second derivatives computed at the location and scale of the
keypoint in the DoG space. A poor candidate usually presents a high principal
value across the edge direction but a small value in the perpendicular direction.
Given the ordered eigenvalues of H (|λ1| < |λ2| < |λ3|) with corresponding
eigenvectors (e1, e2, e3), the eigenvectors define an orthogonal coordinate system
aligned with the direction of minimal (e1) and maximal (e3) curvature. Then we
refer a keypoint to be valid if the following constraint is satisfied: r = |λ3|

|λ1| < T .
Since the ultrasound image is noisy and not as sharp as the normal image, we
lessen this threshold restriction so as to obtain more keypoint candidates in 3D
space. In our experiments, the threshold T is set as 15.

Construction of 3D SIFT Descriptor. Based on [9], we adopt a modified 3D-
SIFT feature descriptor to volumetric ultrasound data. Each keypoint detected in
the above section is first assigned with a dominant orientation (θ∗, φ∗) according
to local image properties so that the keypoint descriptor can be represented
relative to this orientation. As shown in Figure 2(c), the gradient orientation in
3D space is represented by two angles: θ denotes the longitude while φ denotes the
latitude. With the dominant orientation, the neighborhood region surrounding
the keypoint is then rotated so that the dominant orientation points to the
direction of θ∗ = φ∗ = 0. The rotation matrix is defined as:

R =

⎡
⎣

cos θ∗ cosφ∗ sin θ∗ cosφ∗ sinφ∗

− sin θ∗ cos θ∗ 0
− cos θ∗ sinφ∗ − sin θ∗ sin φ∗ cosφ∗

⎤
⎦ (3)

Then 4 × 4 × 4 sub-regions surrounding each keypoint are sampled in the ro-
tated neighborhood. The gradient magnitude and orientation of each sample
in the subregions are calculated. For each sub-region, the magnitude of the
gradient, weighted by a Gaussian window centred at the keypoint, is added
to the corresponding bin for the gradient orientation, where 8 bins (represent
360 degrees) are used for θ and 4 bins (represent 180 degrees) are used for φ.
Finally, the feature vector of each keypoint is of 4 × 4 × 4 × 8 × 4 = 2048
dimensions.
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2.3 Ultrasound Volume Registration and Stitching

Once the 3D SIFT features are extracted from each volume, multiple ultrasound
volumes then can be matched, and stitched into a 3D panorama. Given two ul-
trasound volumes A and B, a set of keypoints is first obtained for each volume.
Usually, there exist thousands of keypoints, and they have to be validated before
being used in the calculation of the transformation matrix. For one particular
keypoint in volume A, its Euclidean distance between each keypoint in volume
B is calculated. A ratio is assigned to each keypoint by comparing the distance
of the closest neighbor to that of the second-closest neighbor. A keypoint is
recognized as a stable feature only if its ratio is larger than a threshold. Since
we apply the 3D SIFT algorithm in a single modality (ultrasound only) registra-
tion, the difference of the intensity between the two correctly matched keypoints
is usually not very large. Therefore, we further eliminate false matching pairs
by comparing the intensity difference between the two keypoints by using the
histogram distance of greylevels within a 8×8 region around the keypoint.

We use RANSAC [12] to simultaneously solve the correspondence problem
and estimate the transformation matrix related to every pair of volumes. The
advantage of RANSAC is its ability to perform robust estimation with a high
degree of accuracy even when outliers are presented. Once pairwise matches have
been established between the ultrasound volumes, we then can obtain the global
transformation matrix for each volume and stitch them into a panorama.

3 Results and Discussion

Data Acquisition. All ultrasound volumes in our experiments were acquired
using a GE Voluson 730 ultrasound scanner with a dedicated 3D ultrasound
probe (RAB2-5L Convex Volume Probe). Two sets of data were collected, where
one included 5 ultrasound volumes obtained from a phantom (CIRS Model 057,
mimicking human liver tissues) with different scan angles, another set included
3 ultrasound volumes obtained by scanning the liver of a patient. In our ex-
periments, about 50% overlapping was used to guarantee sufficient number of
keypoint pairs appear in neighboring volumes. In order to evaluate the precision
of ultrasound panorama, the corresponding CT volume was acquired from a GE
Lightspeed 16-slice multi-detector on the same phantom.

Stitching of Multiple Ultrasound Volumes. We have applied the proposed
method on data sets of the phantom and clinical liver. Most of the parameters
stated in the paper are specified according to the state-of-the-art 2D SIFT algo-
rithms [4]. Figure 3(a) and 3(c) shows part of the matched features in phantom
and clinical data sets respectively. Note that the data is actually a volume, a
multi-planar reconstruction view is used to illustrate the matched feature point
pairs. The cross represents a 3D SIFT feature, and each line links a pair of
matched feature points. Figure 3(b) shows the resultant ultrasound panorama
(one of the cross-sections is shown) obtained by stitching five phantom volumes.
Figure 3(d) shows the ultrasound panorama obtained from the stitching of three
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(a) (b)

(c) (d)

Fig. 3. (a), (c) 3D feature point matching in phantom and clinical data respectively.
(b), (d) Stitched results of the phantom and clinical data sets.

clinical liver volumes. It takes about one minute to register two neighboring vol-
umes (256 × 191 × 248) using a 3GHz Intel Pentium CPU and 3G RAM-based
system.

Precision of Ultrasound Panorama. An important clinical application of
ultrasound panorama is to provide a quantitive measurement of large organs. To
verify the precision of the proposed method, we use the CT volume, obtained
by scanning the same phantom, as a ground truth for evaluating the ultrasound
panorama generated in our system. The CT volume covers the whole phantom.
In both the ultrasound panorama and CT volume, distinguishable feature points
were selected manually from the same anatomical position. Physical distance be-
tween each point pair, within the same modality, is calculated. Figure 4 shows
the measurement of one line in the CT volume and that of another correspond-
ing line in the ultrasound panorama volume. This physical distance provides a
quantitive measurement of the distortion resulted from stitching multiple ultra-
sound volumes. Table 1 lists the measurement results. The length of three lines
are measured in our experiments. The mean error is 2%, which is comparable to
the 2.5% error in the results based on a position tracker [2].

Fig. 4. Physical distance between pairs of distinguishable feature points (shown by
crosses) from both CT (right) & US (left) are measured



58 D. Ni et al.

Table 1. Precision Evaluation. Physical distances of three lines are measured respec-
tively in CT volume and ultrasound panorama.

Line Length in CT(mm) Length in US(mm) Error
1 138.84 141.34 1.8%
2 155.77 152.48 2.1%
3 130.93 128.23 2.0%

Stability of Feature Matching with Rotation. In this experiment, we eval-
uate the stability of feature matching under rotations. Given two ultrasound
volumes A and B, which are first registered. B is resampled according to the
transformation matrix between A and B to obtain a resampled volume B′. We
rotate volume B′ with various angles around x-axis, y-axis and z-axis respec-
tively. The numbers of matched keypoints between A and the rotated B′ are
then calculated for each of these rotations. The result is normalized with respect
to the number of matched keypoints under no rotation, to show the stability
under rotation. In Figure 5, the left sub-figure shows the results from phantom
data sets and the right one shows the results from clinical data sets. As shown
in this figure, when the rotation angle is below 10o, the percentage of matched
feature points is above 50%. When the rotation angle is around 15o, the ratio
can still be maintained at around 40%. It is observed that when the volume is
rotated around z-axis, the results outperform others. One possible reason is that
the image resolution along z-axis is not as good as that along x-axis or y-axis.

Fig. 5. Stability of matched features for rotated ultrasound volumes. The volume is
rotated by 0o, 5o, 10o, 15o, 20o around x-, y- and z-axis respectively.

4 Conclusion

In this paper, we have proposed a modified 3D SIFT based method for generating
ultrasound panorama from multiple volume data sets. Ultrasound volumes are
pre-processed to reduce the false detection and matching of keypoints obtained
from 3D SIFT. Our approach permits the generation of panorama with high
matching stability, because the proposed 3D SIFT feature has merit of invariance
to rotation and provides robust feature matching across a substantial range of
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addition of noise and change in illumination. We have tested the precision of our
approach by comparing the stitched ultrasound volume with the CT volume,
and results have shown promising feasibility of our method in application to
rigid registration of ultrasound volumes. Although ultrasound is mostly used
in soft-tissue imaging, the registration can be approximated as a rigid one in
some cases, e.g. when patients are required to hold their breath during biopsy
procedures. Besides, our method can serve as an essential step of calculating
a global alignment [3] in registering non-rigid motions. We will improve the
precision and apply our proposed method to non-rigid registration by integrating
block based registration algorithm [2] to our method. We’ll also improve the
speed and stability according to characteristics of ultrasound. The long-term
goal would be to develop a fully automatic 3D ultrasound panorama generation
system with no need to use position tracker under routine clinical conditions.
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