Adaptive Discriminant Wavelet Packet Transform and Local Binary Patterns for Meningioma Subtype Classification

  • Hammad Qureshi
  • Olcay Sertel
  • Nasir Rajpoot
  • Roland Wilson
  • Metin Gurcan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5242)


The inherent complexity and non-homogeneity of texture makes classification in medical image analysis a challenging task. In this paper, we propose a combined approach for meningioma subtype classification using subband texture (macro) features and micro-texture features. These are captured using the Adaptive Wavelet Packet Transform (ADWPT) and Local Binary Patterns (LBPs), respectively. These two different textural features are combined together and used for classification. The effect of various dimensionality reduction techniques on classification performance is also investigated. We show that high classification accuracies can be achieved using ADWPT. Although LBP features do not provide higher overall classification accuracies than ADWPT, it manages to provide higher accuracy for a meningioma subtype that is difficult to classify otherwise.


Support Vector Machine Local Binary Pattern Wavelet Packet Dimensionality Reduction Technique Wavelet Packet Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material (2.2 mb)
Electronic Supplementary Material (2,294 KB)


  1. 1.
    Kleihues, P., Cavenee, W.K.: World Health Organization Classification of Tumours. In: Pathology and Genetics. Tumours of the Nervous System. IARC Press (2000)Google Scholar
  2. 2.
    Burger, P.: What is an oligodendroglioma? Brain Pathol. 12, 257–259 (2002)CrossRefGoogle Scholar
  3. 3.
    Lessmann, B., Hans, V., Degenhard, A., Nattkemper, T.W.: Feature space exploration of pathology images using content-based database visualization. In: Proceedings SPIE Medical Imaging (2006)Google Scholar
  4. 4.
    Wirjadi, O., Breuel, T., Feiden, W., Kim, Y.J.: Automated feature selection for the classification of meningioma cell nuclei. In: Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin, pp. 76–80. Informatik Aktuell, Springer (2006)Google Scholar
  5. 5.
    Unser, M., Eden, M.: Multiresolution feature extraction and selection for texture segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 717–728 (1989)CrossRefGoogle Scholar
  6. 6.
    Leung, M.M., Peterson, A.M.: Scale and rotation invariant texture classification. In: Record of The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers (1992)Google Scholar
  7. 7.
    Porter, R., Canagarajah, N.: Gabor filters for rotation invariant texture classification. In: Proceedings of 1997 IEEE International Circuits and Systems (1997)Google Scholar
  8. 8.
    Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 90–94 (1998)CrossRefGoogle Scholar
  9. 9.
    Rajpoot, N.: Local discriminant wavelet packet basis for texture classification. In: Proceedings SPIE Wavelets X, San Diego, California (2003)Google Scholar
  10. 10.
    Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory 38(2), 713–718 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ojala, T., Pietikainen, M.: Unsupervised texture segmentation using feature distributions. Pattern Recognition 32, 477–486 (1999)CrossRefGoogle Scholar
  12. 12.
    Ruiz, A., Sertel, O., Ujaldon, M., Catalyurek, U., Saltz, J., Gurcan, M.: Pathological image analysis using the gpu: Stroma classification for neuroblastoma. In: Proc. of IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), pp. 78–85 (2007)Google Scholar
  13. 13.
    Sertel, O., Kong, J., Shimada, H., Catalyurek, U., Saltz, J., Gurcan, M.: Computr-aided prognosis of neuroblastoma: Classification of stromal development on whole-slide images. In: Proc. of SPIE Medical Imaging (2008)Google Scholar
  14. 14.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on PAMI 24, 971–987 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. on PAMI 22, 4–37 (2000)CrossRefGoogle Scholar
  16. 16.
    Duda, R.O., Hart, P.E., Stork, G.: Pattern Classification. John Wiley, Chichester (2001)zbMATHGoogle Scholar
  17. 17.
    Coifman, R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis. Special Issue on diffusion maps and wavelets 21, 5–30 (July 2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hammad Qureshi
    • 1
  • Olcay Sertel
    • 2
  • Nasir Rajpoot
    • 1
  • Roland Wilson
    • 1
  • Metin Gurcan
    • 2
  1. 1.Department of Computer ScienceUniversity of WarwickUnited Kingdom
  2. 2.Department of Biomedical InformaticsThe Ohio State UniversityUnited States

Personalised recommendations