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Abstract. The inherent complexity and non-homogeneity of texture
makes classification in medical image analysis a challenging task. In
this paper, we propose a combined approach for meningioma subtype
classification using subband texture (macro) features and micro-texture
features. These are captured using the Adaptive Wavelet Packet Trans-
form (ADWPT) and Local Binary Patterns (LBPs), respectively. These
two different textural features are combined together and used for clas-
sification. The effect of various dimensionality reduction techniques on
classification performance is also investigated. We show that high classifi-
cation accuracies can be achieved using ADWPT. Although LBP features
do not provide higher overall classification accuracies than ADWPT, it
manages to provide higher accuracy for a meningioma subtype that is
difficult to classify otherwise.

1 Introduction

Meningiomas are tumours of the brain and the nervous system. They account
for 20% of all brain tumours and exist in three different grades of malignancy
(WHO Grade I-III), most being benign (over 80%) but some showing an in-
creased propensity to recurrence and rare cases being malignant. Most benign
WHO Grade I meningiomas belong to one of the four subtypes shown in Figure 1.
The problem of meningioma subtype classification essentially involves discrim-
inating between four different subtypes of meningiomas, each having distinct
characteristics and unique textural properties.

Histopathological diagnosis of tumors of the brain and spinal cord requires de-
cision making by human experts. The diagnosis and decision making is hampered
by the fact that reviewing of the histological slides is time consuming and is sub-
ject to the availability of the expert and secondly there is considerable inter-rater
variability. Although a lot of effort has been made to exactly define diagnostic
criterion for all tumor entities within the World Health Organization (WHO)
Classification of Tumors [1] but the inter-rater variability still remains consider-
able (see e.g., [2]). Hence, a bias is introduced which influences further therapy
regimens. Due to the progress in digital image retrieval and analysis technologies,
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a. b. c. d.

Fig. 1. Meningioma Images for each subtype a. Meningiothelial (cells form synctium),
b. Fibroblastic (spindle shaped cells in collagen-rich matrix), c. Transitional (cells
form whorls with psammoma bodies), d. Psammomatoes (high number of psammoma
bodies).

computer-assisted decision making can be used to support histopathologists by
providing more objective diagnostic parameters (that may be used to define the
tumor categories better) and allow high-throughput analysis. A first step, how-
ever, when developing new algorithms for image classification is to test whether
an automated technique can reproduce human assignment of single tumor sam-
ples to diagnostic classes. In order to develop such a technique, we have focussed
on meningiomas. Correct histopathological diagnosis can be made in most cases
by a trained human expert i.e. a neuropathologist. Therefore, this tumor is well
suited for testing diagnostic properties of a computer-assisted diagnosis system.

In [3], meningioma subtype visualization has been attempted by Lessman et. al.
who describe how self organizing maps can be combined with wavelet transforms
for clustering of meningioma images. Work on meningioma cell classification was
carried out by Wirjadi et al. [4] by employing supervised learning method called
the Classification and Regression Trees (CART). In the context of texture seg-
mentation and classification, wavelet frames [5] and Gabor transform [6,7] have
been shown to be effective compared to non-transform based methods. Valkealahti
and Oja [8] provide evidence that in some applications Reduced Multidimensional
Co-occurrence (RMC) histograms may perform better than Wavelet Packets. Ra-
jpoot [9] developed discriminant wavelet packets for optimal subband selection for
texture classification which forms the basis of our work.

We are using Local Binary Patterns (LBP) and the wavelet packets based
technique called the Adaptive Wavelet Packet Transform (ADWPT) for texture
analysis of meningionma subtypes. Subsequently different combinations of di-
mensionality reduction methods and classifiers are employed for classification.
The paper presents the comparative results of classification using both feature
sets separately and in combination.

2 Methods

2.1 Adaptive Discriminant Wavelet Packet Transform (ADWPT)

In any image based pattern recognition problem, the issue of feature selection and
reduction is of paramount importance. Feature selection ensures that irrelevant
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information is not provided to the classifier. The optimal the feature set provided
to the classifier, the better the classification performance. ADWPT not only
obtains a discriminant representation but yields feature reduction as well.

Adaptive Discriminant Wavelet Packet Transform Algorithm. A gen-
eralization of the wavelet transform led to the development of wavelet packets.
Coifman and Wickerhauser came up with the technique in early 1990s [10]. AD-
WPT aims to obtain a wavelet based optimal representation by optimizing the
discrimination power of the decompositions representing various textures. The
first stage of the technique is the computation of a full wavelet packet transform.

First, the image is decomposed into its respective subbands and then each
subband is decomposed further until a predefined maximum depth is reached.
The next stage is the selection of the best basis or pruning of the tree. Before
pruning can be done, the discrimination power of each subband must be com-
puted. First, a pseudo probability density function (ppdf) is obtained for each
subband using the normalized energy of the subband coefficients. A ppdf is com-
puted by dividing the energy of a coefficient by the total energy of the subband
and is given by:

sm,n = (xm,n)2/
M∑

i=1

N∑

j=1

x2
i,j (1)

where M ×N is the size of the subband, sm,n is the ppdf of the coefficient xm,n

located at indices (m, n) of the subband. Next, we compute the pseudo average
probability density functions (papdf) of each subband by iteratively taking the
pairwise average of the training images. It is important to note that these are
computed for each class separately as follows:

Aa2
m,n = (sa1

m,n + sa2
m,n)/2 (2)

Aai
m,n = (Aai−1

m,n + sai
m,n)/2, i > 2 (3)

where sai
m,n is the ppdf of the (m, n)th coefficient in a subband for the training

image ai belonging to class a. This process is repeated for all the subbands of
the training images. It is important to note that an average of two subbands
is computed per iteration. The objective is to acquire a basic model of the
probability distribution values for each class so that the difference between the
various classes may be estimated. This averaging is to be referred as pseudo
averaging as it is different from the simple averaging. This is done to counter
any sudden rise or fall in the probability distribution estimates. The pairwise
discriminating power of the (p,q)th subband located at depth d is calculated
using the Hellinger distance as follows:

Dai,bj

d,p,q =
M∑

m=1

N∑

n=1

(
√
Aai

m,n −
√
Abj

m,n)2 (4)

where Aa
m,n and Ab

m,n denote the final average pseudo pdf’s of the (m, n)th

coefficient of the (p, q)th subband at depth d for classes ai and bj respectively.
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This distance is calculated pairwise as indicated. So for a four class problem
six such distances are computed. Subsequently the calculation of the overall
discriminatory power P is computed as:

Pd,p,q =
n−1∑

i=1

n∑

j=i+1

Dai,bj

d,p,q (5)

where i and j represent the different class indices, p, q represents the subband
index at depth d and n is the total number of classes. The process is repeated
for all the subbands at various levels in the full wavelet packet decomposition.
The next stage is the best basis selection.

Best Basis Selection. The algorithm for the best basis selection is stated
below.

1. Compute the J-level full wavelet packet tree decomposition.
2. Calculate the discrimination power of each subband based upon the procedure
described above.
3. Initialize d = J − 1.
4. For all 0 ≤ p < 2j , 0 ≤ q < 2j , do the following:

a If Pd,p,q < max[Pd+1,p,q,Pd+1,p,q+1,Pd+1,p+1,q,Pd+1,p+1,q+1] keep the four
child subbands at depth d + 1

b otherwise keep the parent at depth d and remove the child subbands.

5. Decrement d by 1.
6. If d < 0, then stop, otherwise goto step 4.

Subbands Extraction and Ordering. The next stage is the extraction of the
subbands representing the decomposition and there ordering. The subbands are
obtained from the leaves of the quad-tree structure holding all the subbands.
Then they are ordered based upon their discrimination power starting from the
most discriminant to the least discriminant.

Feature Extraction. Once the most discriminant subbands from the best basis
are obtained (which is a total of 64), the next stage is the extraction of the gray
level co-occurrence matrix (GLCM) features. The GLCM features employed were
contrast, correlation, energy and homogeneity. The use of GLCM features with
ADWPT allows us to perform spatial analysis on the ADWPT subbands. We
are able to exploit the spatial correlation inherent in the texture for classification
purposes. The GLCM analysis is aided by the fact that ADWPT achieves image
frequency decomposition which reduces the range of coefficients for GLCM anal-
ysis rendering it more useful. The GLCM is computed over each subband with
the value of r = 1 (represents the distance) and θ = 0, 90 (represents the angle).
The GLCM features used are contrast, correlation, energy and homogeniety.
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2.2 Local Binary Patterns

Another set of texture features we utilize for meningioma subtype classification is
Local Binary Patterns (LBPs). Similar to conventional texture analysis methods
based on spatial filtering (e.g., Gabor and Laws’ filters), LBPs capture the micro-
features in the image by encoding them in a single 3× 3 operator per pixel [11].
As illustrated in Figure 2(a), for each pixel, a binary number is computed by
thresholding eight neighbor pixel values with center pixel value. The histogram of
the resulting binary patterns can be used as a discriminative feature for texture
analysis [12,13].

Ojala et al. extended the conventional LBP operator to introduce a robust,
illumination and orientation invariant texture feature [14]. In this extension, the
LBP value is computed using the pixel values that lie on a circular pattern
with a radius r around the center pixel. Figure 2(b) shows a sample circular
LBP neighborhood with r = 1. Points used to compute the LBP values are
indicated by pi, i ∈ [1, 8], where the values at diagonal pixels (p1, p3, p5, and
p7) are determined by linear interpolation. Moreover, the 256 distinct output
values corresponding to 256 different local binary patterns defined in a 3 ×
3 neighborhood is reduced to ten by defining a measure of uniformity, which
is based on the number of transitions in the circular bitwise representation.
Uniform LBPs are grouped such that circularly shifted patterns correspond to
the same histogram bins. The resulting histogram contains information about
the distribution of micro-structures such as bright and dark spots and edges with
varying orientations.
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Fig. 2. (a) The conventional LBP operator; (b) circular pattern used to compute ro-
tation invariant uniform patterns

2.3 Dimensionality Reduction and Classification

The analysis of high dimensional data is quite delicate especially if the number of
samples is relatively few compared to the number of the features (or attributes).
This is known as the curse of dimensionality or in general the bias variance
dilemma, which leads to peaking phenomena in classifier design as indicated
in [15]. In other words, the large number of features may overfit the data if the
number of training samples are small. Therefore, we considered several linear
and non-linear dimensionality reduction methods such as Principal Components
Analysis (PCA), Linear Discriminant Analysis (LDA) [16] and Diffusion Maps.
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Diffusion maps are a non-linear dimensionality reduction technique which employ
manifold learning for features selection [17].

Additionaly, we employed several statistical classifiers to perform classifica-
tion and compared the accuracies using different combinations of dimensionality
reduction and classifiers to analyze the feature spaces constructed by applying
ADWPT and LBP features as well as the combined feature space. We used
Bayesian classifier (which estimate the class-conditional multi-variate normal
distributions and maximize the conditional a posteriori probabilities), k -nearest
neighbor (KNN) classifier (which is a non-parametric classifier based on lo-
cal density estimation) and support vector machines (SVM) with a Gaussian
kernel.

3 Experimental Results and Discussion

The meningioma dataset used in our experiments comprises of 320 images with
equal number of samples from each of the four subtypes with five different pa-
tients per subtype. We applied a 4 or 5-fold cross validation to evaluate the
performance of our algorithm. At each fold, we leave out images associated with
one patient from each class for testing and use the rest for training. The classi-
fication accuracies were subsequently averaged. Results using different methods
are presented below in Tables 1 through 4.

Table 1 presents the classification accuracies using the ADWPT features as
discussed in Section 2.1. The Daubechies 8-tab filter is used for the computation
of the ADWPT decomposition. Cross-validated classification accuracies associ-
ated with each subclass are reported together with the average overall classifi-
cation accuracy. As can be seen, for the ADWPT feature set, the SVM classifier
provided remarkably better results when compared to other classifiers. The best
accuracy has been obtained using SVM classifier over the feature set selected
based on the discrimination power of the subbands as mentioned in Section 2.1.
Besides, dimensionality reduction using the PCA and Diffusion Maps followed
by the SVM classifier provided comparable results.

Classification accuracies over the LBP feature set are shown in Table 2 in a
similar way. This time, the Bayesian classifier provided slightly better classifica-
tion accuracy than SVM.

Table 3 shows the classification accuracies over the combined feature set. The
ADWPT features are combined with LBP features by concatenating them. The
classification accuracy of the meningiotheliamatous feature set has improved by
more than 7%. Hence, the strength of LBP in classifying meningiotheliamatous
can be seen here. The results for diffusion maps are interesting in the Table 3
due to the fact that high accuracy results are obtained with a high reduction in
dimensionality.

Finally, the sensitivity and specificity values are compared for each feature
space in Table 4. It can be seen from the Table 4 that the sensitivity of the
meningiotheliamatous tumour improves when ADWPT and LBP features are
combined.
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Table 1. Cross validated classification results for meningiomas (F=Fibroblastic,
M=Meningiotheliamatous, P=Psammomatous, T=Transitional) for ADWPT fea-
tures using different combinations of dimensionality reduction and classifiers
(MD=Mahalanobis Distance)

Dim. reduction Classifier No. Features F M P T Average

- SVM (Gaussian) 64 92.20 60.90 98.50 76.60 82.10
PCA SVM (Gaussian) 37 70.00 63.00 100 86.00 80.00
PCA KNN 35 40.00 61.25 93.75 41.25 59.06
PCA Bayesian 34 67.50 33.75 85.00 50.00 59.06
PCA&LDA Bayesian 3 58.75 52.50 91.25 58.75 65.31
PCA&LDA KNN 3 62.50 52.50 92.50 58.75 66.56
Diffusion Maps MD 19 68.75 27.50 77.50 31.25 51.25
Diffusion Maps SVM (Gaussian) 67 67.00 92.00 94.00 69.00 80.00

Table 2. Cross validated classification results for meningiomas for LBP features

Dim. reduction Classifier No. Features F M P T Average

- SVM (Gaussian) 26 62.50 95.00 80.00 41.00 68.00
PCA SVM (Gaussian) 3 72.00 72.00 91.00 39.00 68.00
PCA KNN 4 58.75 70.00 83.75 36.25 62.19
PCA Bayesian 4 73.75 66.25 95.00 42.50 69.38
PCA&LDA Bayesian 3 73.75 68.75 95.00 38.75 69.06
PCA&LDA KNN 3 72.50 58.75 90.00 33.75 63.75
Diffusion Maps MD 26 62.50 51.25 88.75 46.25 62.19
Diffusion Maps SVM (Gaussian) 7 66.00 81.00 78.00 20.00 61.00

Table 3. Cross validated classification results for meningiomas for ADWPT+LBP
features

Dim. reduction Classifier No. Features F M P T Average

- SVM (Gaussian) 90 84.40 67.18 93.75 68.75 78.53
PCA SVM (Gaussian) 47 73.00 61.00 100 84.00 80.00
PCA KNN 35 56.25 73.75 98.75 45.00 68.44
PCA Bayesian 35 77.50 23.75 97.50 50.00 62.19
PCA&LDA Bayesian 3 78.75 67.50 100 58.75 76.25
PCA&LDA KNN 3 77.50 72.50 100 65.00 78.75
Diffusion Maps MD 61 91.25 16.25 85.00 37.50 57.50
Diffusion Maps SVM (Gaussian) 9 61.00 94.00 94.00 69.00 79.00



Adaptive Discriminant Wavelet Packet Transform and LBPs 203

Table 4. Cross validated specificity (SPEC) and sensitivity (SENS) results (%) for 3
types of features

F M P T Average

SENSADWPT 92.19 60.94 98.44 76.56 82.03
SPECADWPT 90.51 94.49 96.14 89.70 92.71
SENSLBP 62.50 95.00 80.00 41.00 68.00
SPECLBP 91.67 86.25 97.92 83.33 89.69
SENSADWPT+LBP 84.38 67.19 93.75 68.75 78.52
SPECADWPT+LBP 93.25 91.02 96.77 85.63 92.12

4 Conclusions

In this study, we proposed an image analysis approach for meningioma subtype
classification. The proposed approach utilizes the wavelet transform based AD-
WPT and LBP features. Comparative analysis of these feature sets as well as
the classification performance achieved by combining them has been presented.
A discussion of various dimensionality reduction techniques is also presented and
diffusion maps is introduced as a viable dimensionality reduction technique for
meningioma classification.

It has been shown that the ADWPT performs better than LBP in most of
the feature selection and classifier combinations that we have tried. The LBP
features provide 59% to 73% classification accuracy on their own. Although
the combined feature set does not improve the overall classification accuracy, it
improves the classification accuracy of meningiotheliamatous, which is a difficult
subtype to classify correctly, by 7%. The reason for low classification accuracies,
in the case of LBP, is due to the complexity of the texture especially in the case
of fibroblastic and transitional meningiomas. At each instance, the meningioma
image may contain many textural trends with the overall texture not being regu-
lar over the whole slide. This implies that different areas on a slide may have dif-
ferent textural properties. Hence, LBP suffers with low classification accuracies
as it looks for local binary patterns whereas ADWPT is able to resolve the inher-
ent complexity of the images by decomposing the image into various subbands.
These subbands capture different textural trends and therefore, their analysis
renders higher classification accuracies. The SVM classifier using a Gaussian ker-
nel outperformed Bayesian and k-NN classifiers while dimensionality reduction
using PCA followed by SVM yields comparable results.
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