Skip to main content

Atomic Force Microscope Cantilevers Used as Sensors for Monitoring Microdrop Evaporation

  • Chapter
Applied Scanning Probe Methods XI

abstract

For studying the evaporation of millimetre-sized drops of liquids techniques such as video-microscope imaging and ultra-precision weighing with electronic microbalances or with quartz crystal microbalances have been employed in the past decades. Similar techniques are, however, hardly applicable to microscopic drops. Moreover, they do not provide a measure of the interfacial stresses arising at the contact area between liquid and solid. Here we demonstrate the use of atomic force microscope (AFM) cantilevers as sensitive stress, mass, and temperature sensors for monitoring the evaporation of microdrops of water from solid surfaces. Starting from considerations on drops in equilibrium, we will further discuss evaporating drops and details of the experimental technique. We will show how the evaporation of water microdrops on a hydrophobic surface differs from the evaporation on a hydrophilic surface, and how this difference becomes more pronounced towards the end of evaporation. We further show that one-side metal-coated cantilevers, acting as bimetals, allow measuring the average temperature of an evaporating microdrop. Finally, we will discuss two further applications of microdrops evaporating on cantilevers, namely testing the local cleanliness of cantilevers’ surfaces and calibrating cantilevers’ spring constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heilmann J, Lindqvist U (2000) J Imag Sci Technol 44:491

    CAS  Google Scholar 

  2. Socol Y, Berenstein L, Melamed O, Zaban A, Nitzan B (2004) J Imag Sci Technol 48:15

    CAS  Google Scholar 

  3. Kim EK, Ekerdt JG, Willson CG (2005) J Vac Sci Technol B 23:1515

    Article  CAS  Google Scholar 

  4. Tullo AH (2002) Chem Eng News 80:27

    Google Scholar 

  5. Chou FC, Gong SC, Chung CR, Wang MW, Chang CY (2004) Jap J Appl Phys 1 43:5609

    Article  CAS  Google Scholar 

  6. Fabbri M, Jiang SJ, Dhir VK (2005) J Heat Mass Transf 127:38

    Article  Google Scholar 

  7. Amon CH, Yao SC, Wu CF, Hsieh CC (2005) J Heat Transf Trans ASME 127:66

    Article  Google Scholar 

  8. Shedd TA (2007) Heat Transf Eng 28:87

    Article  CAS  Google Scholar 

  9. “Fogtech International”. www.fogtec-international.com

    Google Scholar 

  10. Kawase T, Sirringhaus H, Friend RH, Shimoda T (2001) Adv Mater 13:1601

    Article  CAS  Google Scholar 

  11. Bonaccurso E, Butt HJ, Hankeln B, Niesenhaus B, Graf K (2005) Appl Phys Lett 86:124101

    Article  CAS  Google Scholar 

  12. de Gans BJ, Hoeppener S, Schubert US (2006) Adv Mater 18:910

    Article  CAS  Google Scholar 

  13. Karabasheva S, Baluschev S, Graf K (2006) Appl Phys Lett 89:031110

    Article  CAS  Google Scholar 

  14. Ionescu RE, Marks RS, Gheber LA (2003) Nano Letters 3:1639

    Article  CAS  Google Scholar 

  15. Lefebvre AH (1989) Atomization and Sprays. Taylor & Francis

    Google Scholar 

  16. Lee ER (2003) Microdrop Generation. CRC Press, Taylor and Francis

    Google Scholar 

  17. Edwards BF, Wilder JW, Scime EE (2001) Eur J Phys 22:113

    Article  Google Scholar 

  18. Bourges-Monnier C, Shanahan MER (1995) Langmuir 11:2820

    Article  CAS  Google Scholar 

  19. Rowan SM, Newton MI, McHale G (1995) J Phys Chem 99:13268

    Article  CAS  Google Scholar 

  20. Birdi KS, Vu DT, Winter A (1989) J Phys Chem 93:3702

    Article  CAS  Google Scholar 

  21. Picknett RG, Bexon R (1977) J Colloid Interface Sci 61:336

    Article  CAS  Google Scholar 

  22. Pham NT, McHale G, Newton MI, Carroll BJ, Rowan SM (2004) Langmuir 20:841

    Article  CAS  Google Scholar 

  23. Bonaccurso E, Butt HJ (2005) J Phys Chem B 109:253

    Article  CAS  Google Scholar 

  24. Haschke T, Bonaccurso E, Butt H-J, Lautenschlager D, Schönfeld F, Wiechert W (2006) J Micromech Microeng 16:2273

    Article  Google Scholar 

  25. Golovko DS, Haschke T, Wiechert W, Bonaccurso E (2007) Rev Sci Instrum 78:043705

    Article  CAS  Google Scholar 

  26. Obrien RN, Saville P (1987) Langmuir 3:41

    Article  CAS  Google Scholar 

  27. Cordeiro RM, Pakula T (2005) J Phys Chem B 109:4152

    Article  CAS  Google Scholar 

  28. Soolaman DM, Yu HZ (2005) J Phys Chem B 109:17967

    Article  CAS  Google Scholar 

  29. Butt HJ, Golovko DS, Bonaccurso E (2007) J Phys Chem B 111:5277

    Article  CAS  Google Scholar 

  30. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) Rev Sci Instrum 64:403

    Article  CAS  Google Scholar 

  31. David S, Sefiane K, Tadrist L (2007) Colloid Surf A 298:108

    Article  CAS  Google Scholar 

  32. Blinov VI, Dobrynina VV (1971) J Eng Phys Thermophys 21:229

    CAS  Google Scholar 

  33. Golovko DS, Bonanno P, Lorenzoni S, Raiteri R, Bonaccurso E (2008) J Micromech Microeng 18:095026

    Article  Google Scholar 

  34. Butt HJ, Cappella B, Kappl M (2005) Surface Science Reports 59:1–152

    Article  CAS  Google Scholar 

  35. Cappella B, Dietler G (1999) Surf Sci Rep 34:1

    Article  CAS  Google Scholar 

  36. Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Davies MC, Tendler SJB (2003) Nanotechnology 14:1

    Article  CAS  Google Scholar 

  37. Ralston J, Larson I, Rutland MW, Feiler AA, Kleijn M (2005) Pure Appl Chem 77:2149

    Article  CAS  Google Scholar 

  38. Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Rev Sci Instrum 75:1988

    Article  CAS  Google Scholar 

  39. Green CP, Sader JE (2002) J Appl Phys 92:6262

    Article  CAS  Google Scholar 

  40. Green CP, Sader JE (2005) J Appl Phys 98:114913

    Article  CAS  Google Scholar 

  41. Green CP, Sader JE (2005) Phys Fluids 17:073102

    Article  CAS  Google Scholar 

  42. Higgins MJ, Proksch R, Sader JE, Polcik M, Mc Endoo S, Cleveland JP, Jarvis SP (2006) Rev Sci Instrum 77:013701

    Article  CAS  Google Scholar 

  43. Sader JE (1998) J Appl Phys 84:64

    Article  CAS  Google Scholar 

  44. Sader JE, Chon JWM, Mulvaney P (1999) Rev Sci Instrum 70:3967

    Article  CAS  Google Scholar 

  45. Sader JE, Larson I, Mulvaney P, White LR (1995) Rev Sci Instrum 66:3789

    Article  CAS  Google Scholar 

  46. Butt H-J, Jaschke M (1995) Nanotechnology 6:1

    Article  Google Scholar 

  47. Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868

    Article  CAS  Google Scholar 

  48. Craig VSJ, Neto C (2001) Langmuir 17:6018

    Article  CAS  Google Scholar 

  49. Notley SM, Biggs S, Craig VSJ (2003) Rev Sci Instrum 74:4026

    Article  CAS  Google Scholar 

  50. Senden TJ, Ducker WA (1994) Langmuir 10:1003

    Article  Google Scholar 

  51. Maeda N, Senden TJ (2000) Langmuir 16:9282

    Article  CAS  Google Scholar 

  52. Torii A, Sasaki M, Hane K, Okuma S (1996) Meas Sci Technol 7:179

    Article  CAS  Google Scholar 

  53. Tortonese M, Kirk M (1997) SPIE Proc 3009:53

    Article  CAS  Google Scholar 

  54. Bonaccurso E, Schonfeld F, Butt HJ (2006) Phys Rev B 74:085413

    Article  CAS  Google Scholar 

  55. Thundat T, Zheng X-Y, Chen GY, Sharp SL, Warmack RJ (1993) Appl Phys Lett 63:2150

    Article  CAS  Google Scholar 

  56. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Phys Rev Lett 59:1942

    Article  CAS  Google Scholar 

  57. Marti O, Colchero J, Mlynek J (1990) Nanotechnology 1:141

    Article  Google Scholar 

  58. Meyer E, Lüthi R, Howald L, MBammerlin M, Guggisberg M, Güntherodt H-J (1996) J Vac Sci Technol B 14:1285

    Article  CAS  Google Scholar 

  59. Tsukruk VV, Bliznyuk VN (1998) Langmuir 14:446

    Article  CAS  Google Scholar 

  60. Butt H-J (1991) Biophys J 60:1438

    Article  CAS  Google Scholar 

  61. Ducker WA, Senden TJ, Pashley RM (1991) Nature 353:239

    Article  CAS  Google Scholar 

  62. Florin E-L, Moy VT, Gaub HE (1994) Science 264:415

    Article  CAS  Google Scholar 

  63. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Proc Nat Acad Sci USA 93:3477

    Article  CAS  Google Scholar 

  64. Radmacher M (1999) Physics World 12:33

    CAS  Google Scholar 

  65. Heinz WF, Hoh J (1999) Nanotechnology 17:143

    Article  CAS  Google Scholar 

  66. Lee GU, Kidwell DA, Colton RJ (1994) Langmuir 10:354

    Article  CAS  Google Scholar 

  67. Hoh J, Cleveland JP, Prater CB, Revel J-P, Hansma PK (1992) J Am Chem Soc 114:4917

    Article  CAS  Google Scholar 

  68. Heim L-O, Blum J, Preuss M, Butt H-J (1999) Phys Rev Lett 83:3328

    Article  CAS  Google Scholar 

  69. Berger R, Gerber C, Lang HP, Gimzewski JK (1997) Microel Eng 35:373

    Article  CAS  Google Scholar 

  70. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt H-J, Gerber C, Gimzewski JK (2000) Science 288:316

    Article  CAS  Google Scholar 

  71. Raiteri R, Grattarola M, Butt H-J, Skladal P (2001) Sens Actuators B 79:115

    Article  Google Scholar 

  72. Lang HP, Hegner M, Meyer E, Gerber C (2002) Nanotechnology 13:R29

    Article  CAS  Google Scholar 

  73. Knapp HF, Stemmer A (1999) Surf Interface Anal 27:324

    Article  CAS  Google Scholar 

  74. Lo Y, Huefner ND, Chan WS, Dryden P, Hagenhoff B, Beebe TP (1999) Langmuir 15:6522

    Article  CAS  Google Scholar 

  75. Arai T, Tomitori M (1998) Appl Phys A 66:S319

    Article  CAS  Google Scholar 

  76. Fujihira M, Okabe Y, Tani Y, Furugori M, Akiba U (2000) Ultramicroscopy 82:181

    Article  CAS  Google Scholar 

  77. Senden TJ, Drummond CJ (1995) Coll Surf A: Physicochem Eng Asp 94:29

    Article  CAS  Google Scholar 

  78. Bonaccurso E, Gillies G (2004) Langmuir 20:11824

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonaccurso, E. et al. (2009). Atomic Force Microscope Cantilevers Used as Sensors for Monitoring Microdrop Evaporation. In: Applied Scanning Probe Methods XI. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85037-3_2

Download citation

Publish with us

Policies and ethics