Skip to main content

Presynaptic Signaling by Heterotrimeric G-Proteins

  • Chapter
Pharmacology of Neurotransmitter Release

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, α, β, and γ. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the α-subunit binds GTP in exchange for GDP and α-GTP, and βγ-subunits separate to interact with the target effector. Effector-interaction is terminated by the α-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Gα-GDP and Gβγ then reassociate to form the Gαβγ trimer. G-proteins primarily involved in the modulation of neurotransmitter release are Go, Gq and Gs. Go mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, α2 adrenoreceptors, μ/δ opioid receptors, GABAB receptors). The Go βγ-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca2+ channels, resulting in a reduced ensitivity to membrane depolarization and reduced Ca2+ influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. Gs and Gq are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound α-subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramow-Newerly M, Roy AA, Nunn C et al (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579-91

    CAS  PubMed  Google Scholar 

  • Ahnert-Hilger G, Wiedenmann B (1994) Requirements for exocytosis in permeabilized neuroendocrine cells. Possible involvement of heterotrimeric G proteins associated with secretory vesicles. AnnNYAcad Sci 733:298-305

    CAS  Google Scholar 

  • Ahnert-Hilger G, Schafer T, Spicher K et al (1994) Detection of G-protein heterotrimers on large dense core and small synaptic vesicles of neuroendocrine and neuronal cells. Eur J Cell Biol 65:26-38

    CAS  PubMed  Google Scholar 

  • Anger T, Zhang W, Mende U (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. J Biol Chem 279:3906-15

    CAS  PubMed  Google Scholar 

  • Atzori M, Lau D, Tansey EP et al (2000) H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Nat Neurosci 3:791-8

    CAS  PubMed  Google Scholar 

  • Augustin I, Betz A, Herrmann C et al (1999a) Differential expression of two novel Munc13 proteins in rat brain. Biochem J 337:363-71

    CAS  Google Scholar 

  • Augustin I, Rosenmund C, S üdhof TC et al (1999b) Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400:457-61

    CAS  Google Scholar 

  • Augustine GJ (1990) Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J Physiol 431:343-64

    CAS  PubMed  Google Scholar 

  • Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11:320-6

    CAS  PubMed  Google Scholar 

  • Augustine GJ, Charlton MP (1986) Calcium dependence of presynaptic calcium current and postsynaptic response at the squid giant synapse. J Physiol 381:619-40

    CAS  PubMed  Google Scholar 

  • Bahler M, Greengard P (1987) Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326:704-7

    CAS  PubMed  Google Scholar 

  • Bahler M, Benfenati F, Valtorta F et al (1989) Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin. J Cell Biol 108:1841-9

    CAS  PubMed  Google Scholar 

  • Bai J, Chapman ER (2004) The C2 domains of synaptotagmin-partners in exocytosis. Trends Biochem Sci 29:143-51

    CAS  PubMed  Google Scholar 

  • Baldini G, Martelli AM, Tabellini G et al (2005) Rabphilin localizes with the cell actin cytoskeleton and stimulates association of granules with F-actin cross-linked by {alpha}-actinin. J Biol Chem 280:34974-84

    CAS  PubMed  Google Scholar 

  • Bannister RA, Melliti K, Adams BA (2004) Differential modulation of CaV2.3 Ca2+ channels by Galphaq/11-coupled muscarinic receptors. Mol Pharmacol 65:381-8

    CAS  PubMed  Google Scholar 

  • Barclay JW, Craig TJ, Fisher RJ et al (2003) Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J Biol Chem 278:10538-45

    CAS  PubMed  Google Scholar 

  • Barrie AP, Nicholls DG, Sanchez-Prieto J et al (1991) An ion channel locus for the protein kinase C potentiation of transmitter glutamate release from guinea pig cerebrocortical synaptosomes. J Neurochem 57:1398-1404

    CAS  PubMed  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153-6

    CAS  PubMed  Google Scholar 

  • Beaumont V, Zucker RS (2000) Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nat Neurosci 3:133-41

    CAS  PubMed  Google Scholar 

  • Beech DJ, Bernheim L, Hille B (1992) Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron 8:97-106

    CAS  PubMed  Google Scholar 

  • Benfenati F, Bahler M, Jahn R et al (1989a) Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol 108:1863-72

    CAS  Google Scholar 

  • Benfenati F, Greengard P, Brunner J et al (1989b) Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J Cell Biol 108:1851-62

    CAS  Google Scholar 

  • Benfenati F, Valtorta F, Chieregatti E et al (1992a) Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 8:377-86

    CAS  Google Scholar 

  • Benfenati F, Valtorta F, Rubenstein JL et al (1992b) Synaptic vesicle-associated Ca2+/calmodulindependent protein kinase II is a binding protein for synapsin I. Nature 359:417-20

    CAS  Google Scholar 

  • Benians A, Nobles M, Hosny S et al (2005) Regulators of G-protein signaling form a quaternary complex with the agonist, receptor, and G-protein. A novel explanation for the acceleration of signaling activation kinetics. J Biol Chem 280:13383-94

    CAS  PubMed  Google Scholar 

  • Berglund K, Midorikawa M, Tachibana M (2002) Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. J Neurosci 22:4776-85

    CAS  PubMed  Google Scholar 

  • Bernstein LS, Ramineni S, Hague C et al (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signaling. J Biol Chem 279:21248-56

    CAS  PubMed  Google Scholar 

  • Betz A, Okamoto M, Benseler F et al (1997) Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 272:2520-6

    CAS  PubMed  Google Scholar 

  • Betz A, Ashery U, Rickmann M et al (1998) Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21:123-36

    CAS  PubMed  Google Scholar 

  • Betz A, Thakur P, Junge HJ et al (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183-96

    CAS  PubMed  Google Scholar 

  • Biel M, Schneider A, and Wahl C (2002) Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 12:206-12

    CAS  PubMed  Google Scholar 

  • Blackmer T, Larsen EC, Takahashi M et al (2001) G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292:293-7

    CAS  PubMed  Google Scholar 

  • Blackmer T, Larsen EC, Bartleson C et al (2005) G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nat Neurosci 8:421-5

    CAS  PubMed  Google Scholar 

  • Boczan J, Leenders AG, Sheng ZH (2004) Phosphorylation of syntaphilin by cAMP-dependent protein kinase modulates its interaction with syntaxin-1 and annuls its inhibitory effect on vesicle exocytosis. J Biol Chem 279:18911-19

    CAS  PubMed  Google Scholar 

  • Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43-99

    CAS  PubMed  Google Scholar 

  • Borst JG, Sakmann B (1999) Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos Trans R Soc Lond B Biol Sci 354:347-55

    CAS  PubMed  Google Scholar 

  • Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733-8

    CAS  PubMed  Google Scholar 

  • Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9:134-42

    CAS  PubMed  Google Scholar 

  • Brailoiu E, Dun NJ (2003) Extra- and intracellular sphingosylphosphorylcholine promote spontaneous transmitter release from frog motor nerve endings. Mol Pharmacol 63:1430-6

    CAS  PubMed  Google Scholar 

  • Brailoiu E, Miyamoto MD, Dun NJ (2003) Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction. Neuropharmacology 45:691-701

    CAS  PubMed  Google Scholar 

  • Breukel AI, Wiegant VM, Lopes da Silva FH et al (1998) Presynaptic modulation of cholecystokinin release by protein kinase C in the rat hippocampus. J Neurochem.70:341-8

    CAS  PubMed  Google Scholar 

  • Brody DL, Yue DT (2000) Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 20:889-98

    CAS  PubMed  Google Scholar 

  • Brose N, Rosenmund C, Rettig J (2000) Regulation of transmitter release by Unc-13 and its homologues. Curr Opin Neurobiol 10:303-11

    CAS  PubMed  Google Scholar 

  • Brown DA, Buckley NJ, Caulfield MP et al (1995) Coupling of muscarinic acetylcholine receptors to neural ion channels: closure of K+ channels in Molecular Mechanisms of Muscarinic Acetylcholine Receptor Function, ed. J. Wess (Austin, Tx: R.G. Landes Co.)

    Google Scholar 

  • Brown DA, Hughes SA, Marsh SJ et al (2007) Regulation of M(Kv7.2/7.3) channels in neurons by PIP2 and products of PIP2 hydrolysis: significance for receptor-mediated inhibition. J. Physiol 582: 917-25

    CAS  PubMed  Google Scholar 

  • Bunemann M, Frank M, and Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077-82

    PubMed  Google Scholar 

  • Burgoyne RD, Morgan A (2007) Membrane trafficking: three steps to fusion. Curr Biol 17:R255-R258

    CAS  PubMed  Google Scholar 

  • Burgoyne RD, Fisher RJ, Graham ME et al (2001) Control of membrane fusion dynamics during regulated exocytosis. Biochem Soc Trans 29:467-72

    CAS  PubMed  Google Scholar 

  • Burke BE, DeLorenzo RJ (1981) Ca2+- and calmodulin-stimulated endogenous phosphorylation of neurotubulin. Proc Natl Acad Sci USA 78:991-5

    CAS  PubMed  Google Scholar 

  • Cabrera-Vera TM, Hernandez S, Earls LR et al (2004) RGS9-2 modulates D2 dopamine receptormediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proc Natl Acad Sci USA 101:16339-44

    CAS  PubMed  Google Scholar 

  • Calakos N, Schoch S, S üdhof TC et al (2004) Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release. Neuron 42:889-96

    CAS  PubMed  Google Scholar 

  • Calvert PD, Strissel KJ, Schiesser WE et al (2006) Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 16:560-8

    CAS  PubMed  Google Scholar 

  • Capogna M, Gahwiler BH, Thompson SM (1996) Presynaptic inhibition of calcium-dependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus. J Neurophysiol 75:2017-28

    CAS  PubMed  Google Scholar 

  • Castillo PE, Janz R, S üdhof TC et al (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388:590-3

    CAS  PubMed  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F et al (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415:327-30

    CAS  PubMed  Google Scholar 

  • Chaki S, Muramatsu M, Otomo S (1994) Involvement of protein kinase C activation in regulation of acetylcholine release from rat hippocampal slices by minaprine. Neurochem Int 24:37-41

    CAS  PubMed  Google Scholar 

  • Chameau P, Van d, V, Fossier P et al (2001) Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch 443:289-96

    CAS  PubMed  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498-508

    CAS  PubMed  Google Scholar 

  • Chen H, Lambert NA (2000) Endogenous regulators of G protein signaling proteins regulate presynaptic inhibition at rat hippocampal synapses. Proc Natl Acad Sci USA 97:12810-15

    CAS  PubMed  Google Scholar 

  • Chen YA, Duvvuri V, Schulman H et al (1999) Calmodulin and protein kinase C increase Ca(2+)stimulated secretion by modulating membrane-attached exocytic machinery. J Biol Chem 274:26469-76

    CAS  PubMed  Google Scholar 

  • Chheda MG, Ashery U, Thakur P et al (2001) Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 3:331-8

    CAS  PubMed  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2001a) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187-93

    CAS  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2001b) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187-93

    CAS  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2003a) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69-78

    CAS  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2003b) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69-78

    CAS  Google Scholar 

  • Chung SH, Song WJ, Kim K et al (1998) The C2 domains of Rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. In vitro characteristics and possible significance. J Biol Chem 273:10240-8

    CAS  PubMed  Google Scholar 

  • Clancy SM, Fowler CE, Finley M et al (2005) Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-proteinchannel complex. Mol Cell Neurosci 28:375-89

    CAS  PubMed  Google Scholar 

  • Cochilla AJ, Alford S (1998) Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20:1007-16

    CAS  PubMed  Google Scholar 

  • Coffey ET, Sihra TS, Nicholls DG (1993) Protein kinase C and the regulation of glutamate exocytosis from cerebrocortical synaptosomes. J Biol Chem 268:21060-5

    CAS  PubMed  Google Scholar 

  • Coffey ET, Herrero I, Sihra TS et al (1994a) Glutamate exocytosis and MARCKS phosphorylation are enhanced by a metabotropic glutamate receptor coupled to a protein kinase C synergistically activated by diacylglycerol and arachidonic acid [published erratum appears in J Neurochem 1995 Jan; 64(1):471]. J Neurochem 63:1303-10

    CAS  Google Scholar 

  • Coffey ET, Sihra TS, Nicholls DG et al (1994b) Phosphorylation of synapsin I and MARCKS in nerve terminals is mediated by Ca2+ entry via an Aga-GI sensitive Ca2+ channel which is coupled to glutamate exocytosis. FEBS Lett 353:264-8

    CAS  Google Scholar 

  • Colby KA, Blaustein MP (1988) Inhibition of voltage-gated K channels in synaptosomes by sn1,2-dioctanoylglycerol, an activator of protein kinase C. J Neurosci 8:4685-92

    CAS  PubMed  Google Scholar 

  • Collin T, Marty A, Llano I (2005) Presynaptic calcium stores and synaptic transmission. Curr Opin Neurobiol 15:275-81

    CAS  PubMed  Google Scholar 

  • Conklin BR, Farfel Z, Lustig KD et al (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature; 363:274-6

    CAS  PubMed  Google Scholar 

  • Cousin MA, Robinson PJ (2000) Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J Neurochem 75:1645-53

    CAS  PubMed  Google Scholar 

  • Cousin MA, McLaughlin M, Nicholls DG (1999) Protein kinase C modulates field-evoked transmitter release from cultured rat cerebellar granule cells via a dendrotoxin-sensitive K+ channel. Eur J Neurosci 11:101-9

    CAS  PubMed  Google Scholar 

  • Cox SL, Schelb V, Trendelenburg AU, Starke K (2000) Enhancement of noradrenaline release by angiotensin II and bradykinin in mouse atria: evidence for cross-talk between Gq/11 protein and Gi/o protein-coupled receptors. Br J Pharmacol 129:1095-1102

    CAS  PubMed  Google Scholar 

  • Craig TJ, Evans GJ, Morgan A (2003) Physiological regulation of Munc18/nSec1 phosphorylation on serine-313. J Neurochem 86:1450-7

    CAS  PubMed  Google Scholar 

  • Czernik AJ, Pang DT, and Greengard P (1987) Amino acid sequences surrounding the cAMPdependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci USA 84:7518-22

    CAS  PubMed  Google Scholar 

  • Daniel H, Rancillac A, Crepel F (2004) Mechanisms underlying cannabinoid inhibition of presynaptic Ca2+ influx at parallel fibre synapses of the rat cerebellum. J Physiol 557:159-74

    CAS  PubMed  Google Scholar 

  • Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABAmediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513-31

    CAS  PubMed  Google Scholar 

  • De Camilli P, Greengard P (1986a) Synapsin I: a synaptic vesicle-associated neuronal phosphoprotein. Biochem Pharmacol 35:4349-57

    Google Scholar 

  • De Camilli P, Greengard P (1986b) Synapsin I: a synaptic vesicle-associated neuronal phosphoprotein. Biochem.Pharmacol 35:4349-57

    Google Scholar 

  • De Camilli P, Ueda T, Bloom FE et al (1979) Widespread distribution of protein I in the central and peripheral nervous systems. Proc Natl Acad Sci USA 76:5977-81

    PubMed  Google Scholar 

  • De Camilli P, Cameron R, Greengard P (1983a) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 96:1337-54

    Google Scholar 

  • De Camilli P, Harris SM, Jr., Huttner WB et al (1983b) Synapsin I (Protein I), a nerve terminalspecific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J Cell Biol 96:1355-73

    Google Scholar 

  • De Camilli P, Benfenati F, Valtorta F et al (1990) The synapsins. Annu Rev Cell Biol 6:433-60

    PubMed  Google Scholar 

  • De Vries KJ, Geijtenbeek A, Brian EC et al (2000) Dynamics of Munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur J Neurosci 12:385-90

    PubMed  Google Scholar 

  • De Rooij J, Zwartkruis FJ, Verheijen MH et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474-7

    PubMed  Google Scholar 

  • De Vries L, Zheng B, Fischer T et al (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235-71

    PubMed  Google Scholar 

  • Dekker LV, De Graan PN, Pijnappel P et al (1991) Noradrenaline release from streptolysin Opermeated rat cortical synaptosomes: effects of calcium, phorbol esters, protein kinase inhibitors, and antibodies to the neuron-specific protein kinase C substrate B-50 (GAP-43). J Neurochem 56:1146-53

    CAS  PubMed  Google Scholar 

  • Delmas P, Abogadie FC, Dayrell M et al (1998a) G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. Eur J Neurosci 10:1654-66

    CAS  Google Scholar 

  • Delmas P, Brown DA, Dayrell M et al (1998b) On the role of endogenous G-protein beta gamma subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J Physiol 506(Pt 2):319-29

    CAS  Google Scholar 

  • Delmas P, Abogadie FC, Milligan G et al (1999) betagamma dimers derived from Go and Gi proteins contribute different components of adrenergic inhibition of Ca2+ channels in rat sympathetic neurones. J Physiol 518:23-36

    CAS  PubMed  Google Scholar 

  • Delmas P, Coste B, Gamper N et al (2005) Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 47:179-82

    CAS  PubMed  Google Scholar 

  • DeLorenzo RJ, Freedman SD, Yohe WB et al (1979) Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci USA 76:1838-42

    CAS  PubMed  Google Scholar 

  • DeWaard M, Hering J, Weiss N et al (2005) How do G proteins directly control neuronal Ca2+ channel function? Trends Pharmacol Sci 26:427-36

    CAS  Google Scholar 

  • Digby GJ, Lober RM, Sethi PR et al (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci USA 103:17789-94

    CAS  PubMed  Google Scholar 

  • Ding J, Guzman JN, Tkatch T et al (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832-42

    CAS  PubMed  Google Scholar 

  • DiPaolo G, DeCamilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-7

    CAS  Google Scholar 

  • DiPaolo G, Moskowitz HS, Gipson K et al (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415-22

    CAS  Google Scholar 

  • Dittman JS, Regehr WG (1996) Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci 16:1623-33

    CAS  PubMed  Google Scholar 

  • Diverse-Pierluissi M, Goldsmith PK, Dunlap K (1995) Transmitter-mediated inhibition of N-type calcium channels in sensory neurons involves multiple GTP-binding proteins and subunits. Neuron 14:191-200

    CAS  PubMed  Google Scholar 

  • Dodge FA, Jr., Rahamimoff R (1967) Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 193:419-32

    CAS  PubMed  Google Scholar 

  • Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607-27

    CAS  PubMed  Google Scholar 

  • Dolphin AC, Greengard P (1981a) Neurotransmitter- and neuromodulator-dependent alterations in phosphorylation of protein I in slices of rat facial nucleus. J Neurosci 1:192-203

    CAS  Google Scholar 

  • Dolphin AC, Greengard P (1981b) Serotonin stimulates phosphorylation of protein I in the facial motor nucleus of rat brain. Nature 289:76-9

    CAS  Google Scholar 

  • Dolphin AC, Goelz SE, Greengard P (1980) Neuronal protein phosphorylation: recent studies concerning protein I, a synapse-specific phosphoprotein. Pharmacol Biochem Behav 13 Suppl 1:169-74:169-74

    CAS  PubMed  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA et al (1997) RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci USA 94:10461-6

    CAS  PubMed  Google Scholar 

  • Doussau F, Augustine GJ (2000) The actin cytoskeleton and neurotransmitter release: an overview. Biochimie 82:353-63

    CAS  PubMed  Google Scholar 

  • Dropic AJ, Brailoiu E, Cooper RL (2005) Presynaptic mechanism of action induced by 5-HT in nerve terminals: possible involvement of ryanodine and IP3 sensitive 2+ stores. Comp Biochem.Physiol A Mol Integr Physiol 142:355-61

    PubMed  Google Scholar 

  • Druey KM (2001) Bridging with GAPs: receptor communication through RGS proteins. Sci STKE 2001:RE14

    Google Scholar 

  • Druey KM, Sullivan BM, Brown D et al (1998) Expression of GTPase-deficient Gialpha2 results in translocation of cytoplasmic RGS4 to the plasma membrane. J Biol Chem 273:18405-10

    CAS  PubMed  Google Scholar 

  • Dulubova I, Lou X, Lu J et al (2005) A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J 24:2839-50

    CAS  PubMed  Google Scholar 

  • Dumaz N, Marais R (2005) Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 272:3491-3504

    CAS  PubMed  Google Scholar 

  • Dunkley PR, Robinson PJ (1986) Depolarization-dependent protein phosphorylation in synaptosomes: mechanisms and significance. Prog Brain Res 69:273-93

    CAS  PubMed  Google Scholar 

  • Dunkley PR, Baker CM, Robinson PJ (1986) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: characterization of active protein kinases by phosphopeptide analysis of substrates. J Neurochem 46:1692-1703

    CAS  PubMed  Google Scholar 

  • Ehrlich I, Elmslie KS (1995) Neurotransmitters acting via different G proteins inhibit N-type calcium current by an identical mechanism in rat sympathetic neurons. J Neurophysiol 74:2251-7

    CAS  PubMed  Google Scholar 

  • Esser L, Wang CR, Hosaka M et al (1998) Synapsin I is structurally similar to ATP-utilizing en- zymes. EMBO J 17:977-84

    CAS  PubMed  Google Scholar 

  • Evans GJ, Morgan A (2002) Phosphorylation-dependent interaction of the synaptic vesicle proteins cysteine string protein and synaptotagmin I. Biochem J 364:343-7

    CAS  PubMed  Google Scholar 

  • Evans GJ, Morgan A (2003) Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity. Biochem Soc Trans 31:824-7

    CAS  PubMed  Google Scholar 

  • Evans GJ, Wilkinson MC, Graham ME et al (2001) Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. J Biol Chem 276:47877-85

    CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez JM, Wanaverbecq N, Halley P et al (1999) Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones. J Physiol 515:631-7

    CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez JM, Abogadie FC, Milligan G et al (2001) Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native G(i)-proteins do so in situ. Eur J Neurosci 14:283-92

    CAS  PubMed  Google Scholar 

  • Fernandez-Peruchena C, Navas S, Montes MA et al (2005) Fusion pore regulation of transmitter release. Brain Res Brain Res Rev 49:406-15

    CAS  PubMed  Google Scholar 

  • Filippov AK, Fernandez-Fernandez JM, Marsh SJ et al (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K(+) channels by P2Y nucleotide receptors. Mol Pharmacol 66:468-77

    CAS  PubMed  Google Scholar 

  • Finley MF, Scheller RH, Madison DV (2003) SNAP-25 Ser187 does not mediate phorbol ester enhancement of hippocampal synaptic transmission. Neuropharmacology 45:857-62

    CAS  PubMed  Google Scholar 

  • Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of fusion pore dynamics during exocytosis by Munc18. Science 291:875-8

    CAS  PubMed  Google Scholar 

  • Fowler CE, Aryal P, Suen KF et al (2007) Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 580:51-65

    CAS  PubMed  Google Scholar 

  • Fujita S, Inanobe A, Chachin M et al (2000) A regulator of G protein signalling (RGS) protein confers agonist-dependent relaxation gating to a G protein-gated K+ channel. J Physiol 526:341-7

    CAS  PubMed  Google Scholar 

  • Fujita Y, Sasaki T, Fukui K et al (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271:7265-8

    CAS  PubMed  Google Scholar 

  • Fulop T, Smith C (2006) Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells. Biochem J 399:111-19

    CAS  PubMed  Google Scholar 

  • Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324-32

    CAS  PubMed  Google Scholar 

  • Fykse EM, Li C, and S üdhof TC (1995) Phosphorylation of rabphilin-3A by Ca2+/calmodulinand cAMP-dependent protein kinases in vitro. J Neurosci 15:2385-95

    CAS  PubMed  Google Scholar 

  • Gales C, Van Durm JJ, Schaak S et al (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 13:778-86

    CAS  PubMed  Google Scholar 

  • Gamper N, Reznikov V, Yamada Y et al (2004) Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980-92

    CAS  PubMed  Google Scholar 

  • Garcia DE, Li B, Garcia-Ferreiro RE et al (1998) G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J Neurosci 18:9163-70

    CAS  PubMed  Google Scholar 

  • Garcia EP, Gatti E, Butler M et al (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA 91:2003-7

    CAS  PubMed  Google Scholar 

  • Genoud S, Pralong W, Riederer BM et al (1999) Activity-dependent phosphorylation of SNAP-25 in hippocampal organotypic cultures. J Neurochem 72:1699-1706

    CAS  PubMed  Google Scholar 

  • Geppert M, Bolshakov VY, Siegelbaum SA et al (1994) The role of Rab3A in neurotransmitter release. Nature 369:493-7

    CAS  PubMed  Google Scholar 

  • Geppert M, Goda Y, Stevens CF et al (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387:810-14

    CAS  PubMed  Google Scholar 

  • Gerachshenko T, Blackmer T, Yoon EJ et al (2005) Gbetagamma acts at the C terminus of SNAP25 to mediate presynaptic inhibition. Nat Neurosci 8:597-605

    CAS  PubMed  Google Scholar 

  • Gereau RW, Conn PJ (1994) Presynaptic enhancement of excitatory synaptic transmission by betaadrenergic receptor activation. J Neurophysiol 72:1438-42

    CAS  PubMed  Google Scholar 

  • Gerona RR, Larsen EC, Kowalchyk JA et al (2000) The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 275:6328-36

    CAS  PubMed  Google Scholar 

  • Gillis KD, Mossner R, Neher E (1996) Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16:1209-20

    CAS  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615-49

    CAS  PubMed  Google Scholar 

  • Giovedi S, Darchen F, Valtorta F et al (2004a) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. II. Functional effects of the Rab3A-synapsin I interaction. J Biol Chem 279:43769-79

    CAS  Google Scholar 

  • Giovedi S, Vaccaro P, Valtorta F et al (2004b) Synapsin is a novel Rab3 effector protein on small synaptic vesicles. I. Identification and characterization of the synapsin I-Rab3 interactions in vitro and in intact nerve terminals. J Biol Chem 279:43760-8

    CAS  Google Scholar 

  • Gonelle-Gispert C, Costa M, Takahashi M et al (2002) Phosphorylation of SNAP-25 on serine187 is induced by secretagogues in insulin-secreting cells, but is not correlated with insulin secretion. Biochem J 368:223-32

    CAS  PubMed  Google Scholar 

  • Gotow T, Miyaguchi K, Hashimoto PH (1991) Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience 40:587-98

    CAS  PubMed  Google Scholar 

  • Gower H, Rodnight R, Brammer MJ (1986) Ca2+ sensitivity of Ca2+-dependent protein kinase activities toward intrinsic proteins in synaptosomal membrane fragments from rat cerebral tissue. J Neurochem 46:440-7

    CAS  PubMed  Google Scholar 

  • Graham ME, Fisher RJ, Burgoyne RD (2000) Measurement of exocytosis by amperometry in adrenal chromaffin cells: effects of clostridial neurotoxins and activation of protein kinase C on fusion pore kinetics. Biochimie 82:469-79

    CAS  PubMed  Google Scholar 

  • Greengard P, Valtorta F, Czernik AJ et al (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780-5

    CAS  PubMed  Google Scholar 

  • Gundlfinger A, Bischofberger J, Johenning FW et al (2007) Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels. J Physiol 582:263-77

    CAS  PubMed  Google Scholar 

  • Halachmi N, Lev Z (1996) The Sec1 family: a novel family of proteins involved in synaptic transmission and general secretion. J Neurochem 66:889-97

    CAS  PubMed  Google Scholar 

  • Haley JE, Delmas P, Offermanns S et al (2000) Muscarinic inhibition of calcium current and M current in Galpha q-deficient mice. J Neurosci 20:3973-9

    CAS  PubMed  Google Scholar 

  • Hamid J, Nelson D, Spaetgens R et al (1999) Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 274:6195-6202

    CAS  PubMed  Google Scholar 

  • Han J, Mark MD, Li X et al (2006) RGS2 determines short-term synaptic plasticity in hippocampal neurons by regulating Gi/o-mediated inhibition of presynaptic Ca2+ channels. Neuron 51:575-86

    CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467-75

    CAS  PubMed  Google Scholar 

  • Hao J, Michalek C, Zhang W et al (2006) Regulation of cardiomyocyte signaling by RGS proteins: differential selectivity towards G proteins and susceptibility to regulation. J Mol Cell Cardiol 41:51-61

    CAS  PubMed  Google Scholar 

  • Haruta T, Takami N, Ohmura M et al (1997) Ca2+-dependent interaction of the growth-associated protein GAP-43 with the synaptic core complex. Biochem J 325:455-63

    CAS  PubMed  Google Scholar 

  • Harvey VL, Stephens GJ (2004) Mechanism of GABA receptor-mediated inhibition of spontaneous GABA release onto cerebellar Purkinje cells. Eur J Neurosci 20:684-700

    PubMed  Google Scholar 

  • Hata Y, Slaughter CA, S üdhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature. 366:347-51

    CAS  PubMed  Google Scholar 

  • Hay JC, Fisette PL, Jenkins GH et al (1995) ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature 374:173-7

    CAS  PubMed  Google Scholar 

  • He L, Wu XS, Mohan R et al (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444:102-5

    CAS  PubMed  Google Scholar 

  • He Q, Dent EW, Meiri KF (1997) Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci 17:3515-24

    CAS  PubMed  Google Scholar 

  • Hein P, Frank M, Hoffmann C et al (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24:4106-14

    CAS  PubMed  Google Scholar 

  • Hens JJ, De WM, Dekker LV et al (1993) Studies on the role of B-50 (GAP-43) in the mechanism of Ca(2+)-induced noradrenaline release: lack of involvement of protein kinase C after the Ca2+ trigger. J Neurochem 60:1264-73

    CAS  PubMed  Google Scholar 

  • Hens JJ, De WM, Boomsma F et al (1995) N-terminal-specific anti-B-50 (GAP-43) antibodies inhibit Ca(2+)-induced noradrenaline release, B-50 phosphorylation and dephosphorylation, and calmodulin binding. J Neurochem 64:1127-36

    CAS  PubMed  Google Scholar 

  • Hens JJ, Ghijsen WE, Weller U et al (1998) Anti-B-50 (GAP-43) antibodies decrease exocytosis of glutamate in permeated synaptosomes. Eur J Pharmacol 363:229-40

    CAS  PubMed  Google Scholar 

  • Hepler JR, Berman DM, Gilman AG et al (1997) RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc Natl Acad Sci USA 94:428-32

    CAS  PubMed  Google Scholar 

  • Hepp R, Cabaniols JP, Roche PA (2002) Differential phosphorylation of SNAP-25 in vivo by protein kinase C and protein kinase A. FEBS Lett 532:52-56

    CAS  PubMed  Google Scholar 

  • Herrero I, Sanchez-Prieto J (1996) cAMP-dependent facilitation of glutamate release by betaadrenergic receptors in cerebrocortical nerve terminals. J Biol Chem 271:30554-60

    CAS  PubMed  Google Scholar 

  • Heximer SP, Watson N, Linder ME et al (1997) RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci USA 94:14389-93

    CAS  PubMed  Google Scholar 

  • Heximer SP, Srinivasa SP, Bernstein LS et al (1999) G protein selectivity is a determinant of RGS2 function. J Biol Chem 274:34253-9

    CAS  PubMed  Google Scholar 

  • Heximer SP, Lim H, Bernard JL et al (2001) Mechanisms governing subcellular localization and function of human RGS2. J Biol Chem 276:14195-203

    CAS  PubMed  Google Scholar 

  • Higashida H (1988) Acetylcholine release by bradykinin, inositol 1,4,5-trisphosphate and phorbol dibutyrate in rodent neuroblastoma cells. J Physiol 397:209-22

    CAS  PubMed  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ et al (1999a) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354:269-79

    CAS  Google Scholar 

  • Hilfiker S, Pieribone VA, Nordstedt C et al (1999b) Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem 73:921-32

    CAS  Google Scholar 

  • Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531-6

    CAS  PubMed  Google Scholar 

  • Hirling H, Scheller RH (1996) Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex. Proc Natl Acad Sci USA 93:11945-9

    CAS  PubMed  Google Scholar 

  • Hirokawa N, Sobue K, Kanda K et al (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 108:111-26

    CAS  PubMed  Google Scholar 

  • Ho MF, Bahler M, Czernik AJ et al (1991) Synapsin I is a highly surface-active molecule. J Biol Chem 266:5600-7

    CAS  PubMed  Google Scholar 

  • Holz RW, Hlubek MD, Sorensen SD et al (2000) A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J Biol Chem 275:17878-85

    CAS  PubMed  Google Scholar 

  • Hosaka M, S üdhof TC (1998) Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J Biol Chem 273:1425-9

    CAS  PubMed  Google Scholar 

  • Hosaka M, S üdhof TC (1999) Homo- and heterodimerization of synapsins. J Biol Chem 274:16747-53

    CAS  PubMed  Google Scholar 

  • Hosaka M, Hammer RE, S üdhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24:377-87

    CAS  PubMed  Google Scholar 

  • Huang CC, Hsu KS, Gean PW (1996) Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala. J Neurosci 16:1026-33

    CAS  PubMed  Google Scholar 

  • Huang CC, Wang SJ, Gean PW (1998) Selective enhancement of P-type calcium currents by isoproterenol in the rat amygdala. J Neurosci 18:2276-82

    CAS  PubMed  Google Scholar 

  • Huang CL, Slesinger PA, Casey PJ et al (1995) Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15:1133-43

    CAS  PubMed  Google Scholar 

  • Huang YY, Li XC, and Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79:69-79

    CAS  PubMed  Google Scholar 

  • Huttner WB, Greengard P (1979) Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proc Natl Acad Sci USA 76:5402-6

    CAS  PubMed  Google Scholar 

  • Iannazzo L (2001) Involvement of B-50 (GAP-43) phosphorylation in the modulation of transmitter release by protein kinase C. Clin Exp Pharmacol Physiol 28:901-4

    CAS  PubMed  Google Scholar 

  • Ilardi JM, Mochida S, Sheng ZH (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2:119-24

    CAS  PubMed  Google Scholar 

  • Iwasaki S, Kataoka M, Sekiguchi M et al (2000) Two distinct mechanisms underlie the stimulation of neurotransmitter release by phorbol esters in clonal rat pheochromocytoma PC12 cells. J Biochem (Tokyo) 128:407-14

    CAS  Google Scholar 

  • Jarolimek W, Misgeld U (1997) GABAB receptor-mediated inhibition of tetrodotoxin-resistant GABA release in rodent hippocampal CA1 pyramidal cells. J Neurosci 17:1025-32

    CAS  PubMed  Google Scholar 

  • Jeong SW, Ikeda SR (2000a) Effect of G protein heterotrimer composition on coupling of neurotransmitter receptors to N-type Ca(2+) channel modulation in sympathetic neurons. Proc Natl Acad Sci USA 97:907-12

    CAS  Google Scholar 

  • Jeong SW, Ikeda SR (2000b) Endogenous regulator of G-protein signaling proteins modify N-type calcium channel modulation in rat sympathetic neurons. J Neurosci 20:4489-96

    CAS  Google Scholar 

  • Jeong SW, Ikeda SR (2001) Differential regulation of G protein-gated inwardly rectifying K(+) channel kinetics by distinct domains of RGS8. J Physiol 535:335-47

    CAS  PubMed  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL et al (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci USA 93:3679-83

    CAS  PubMed  Google Scholar 

  • Jovanovic JN, Czernik AJ, Fienberg AA et al (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 3:323-9

    CAS  PubMed  Google Scholar 

  • Jovanovic JN, Sihra TS, Nairn AC et al (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J Neurosci 21:7944-53

    CAS  PubMed  Google Scholar 

  • Junge HJ, Rhee JS, Jahn O et al (2004) Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell. 118:389-401

    CAS  PubMed  Google Scholar 

  • Kajikawa Y, Saitoh N, Takahashi T (2001) GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABA(B) receptor. Proc Natl Acad Sci USA 98:8054-8

    CAS  PubMed  Google Scholar 

  • Kammermeier PJ, Ikeda SR (1999) Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 22:819-29

    CAS  PubMed  Google Scholar 

  • Kaneko M, Takahashi T (2004) Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. J Neurosci 24:5202-8

    CAS  PubMed  Google Scholar 

  • Kasai H, Aosaki T (1989) Modulation of Ca-channel current by an adenosine analog mediated by a GTP-binding protein in chick sensory neurons. Pflugers Arch 414:145-9

    CAS  PubMed  Google Scholar 

  • Kataoka M, Kuwahara R, Iwasaki S et al (2000) Nerve growth factor-induced phosphorylation of SNAP-25 in PC12 cells: a possible involvement in the regulation of SNAP-25 localization. J Neurochem 74:2058-66

    CAS  PubMed  Google Scholar 

  • Kato M, Sasaki T, Ohya T et al (1996) Physical and functional interaction of rabphilin-3A with alpha-actinin. J Biol Chem 271:31775-8

    CAS  PubMed  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769-824

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275-9

    CAS  PubMed  Google Scholar 

  • Khvotchev M, Lonart G, S üdhof TC (2000) Role of calcium in neurotransmitter release evoked by alpha-latrotoxin or hypertonic sucrose. Neuroscience 101:793-802

    CAS  PubMed  Google Scholar 

  • Kimura M, Saitoh N, Takahashi T (2003) Adenosine A(1) receptor-mediated presynaptic inhibition at the calyx of Held of immature rats. J Physiol 553:415-26

    CAS  PubMed  Google Scholar 

  • Klenchin VA, Martin TF (2000) Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82:399-407

    CAS  PubMed  Google Scholar 

  • Koenig JH, Yamaoka K, Ikeda K (1993) Calcium-induced translocation of synaptic vesicles to the active site. J Neurosci 13:2313-22

    CAS  PubMed  Google Scholar 

  • Koh DS, Hille B (1997) Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry. Proc Natl Acad Sci USA 94:1506-11

    CAS  PubMed  Google Scholar 

  • Koh TW, Bellen HJ (2003) Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci 26:413-22

    CAS  PubMed  Google Scholar 

  • Krueger BK, Forn J, Greengard P (1977) Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem 252:2764-73

    CAS  PubMed  Google Scholar 

  • Kubista H, Boehm S (2006) Molecular mechanisms underlying the modulation of exocytotic no-radrenaline release via presynaptic receptors. Pharmacol Ther 112:213-42

    CAS  PubMed  Google Scholar 

  • Kulik A, Vida I, Fukazawa Y et al (2006) Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 26:4289-97

    CAS  PubMed  Google Scholar 

  • Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20:917-25

    CAS  PubMed  Google Scholar 

  • Lamb TD, Pugh EN, Jr. (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719-58

    CAS  PubMed  Google Scholar 

  • Landis DM, Hall AK, Weinstein LA et al (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1:201-9

    CAS  PubMed  Google Scholar 

  • Lao G, Scheuss V, Gerwin CM et al (2000) Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 25:191-201

    CAS  PubMed  Google Scholar 

  • Lechner SG, Hussl S, Schicker KW et al (2005) Presynaptic inhibition via a phospholipase Cand phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 68:1387-96

    CAS  PubMed  Google Scholar 

  • Levitzki A, Klein S (2002) G-protein subunit dissociation is not an integral part of G-protein action. Chembiochem 3:815-18

    CAS  PubMed  Google Scholar 

  • Li C, Takei K, Geppert M et al (1994) Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 13:885-98

    CAS  PubMed  Google Scholar 

  • Li L, Chin LS, Shupliakov O et al (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci USA 92:9235-9

    CAS  PubMed  Google Scholar 

  • Li Q, Lau A, Morris TJ et al (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070-81

    CAS  PubMed  Google Scholar 

  • Liu J, Ernst SA, Gladycheva SE et al (2004) Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo. J Biol Chem 279:55924-36

    CAS  PubMed  Google Scholar 

  • Llinas R, Sugimori M, Simon SM (1982) Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc Natl Acad Sci USA 79:2415-19

    CAS  PubMed  Google Scholar 

  • Lober RM, Pereira MA, Lambert NA (2006) Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors. J Neurosci 26:12602-8

    CAS  PubMed  Google Scholar 

  • Lonart G (2002) RIM1: an edge for presynaptic plasticity. Trends Neurosci 25:329-32

    CAS  PubMed  Google Scholar 

  • Lonart G, S üdhof TC (1998) Region-specific phosphorylation of rabphilin in mossy fiber nerve terminals of the hippocampus. J Neurosci 18:634-40

    CAS  PubMed  Google Scholar 

  • Lonart G, S üdhof TC (2000) Assembly of SNARE core complexes prior to neurotransmitter release sets the readily releasable pool of synaptic vesicles. J Biol Chem 275:27703-7

    CAS  PubMed  Google Scholar 

  • Lonart G, Schoch S, Kaeser PS et al (2003) Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49-60

    CAS  PubMed  Google Scholar 

  • Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435:497-501

    CAS  PubMed  Google Scholar 

  • Loyet KM, Kowalchyk JA, Chaudhary A et al (1998) Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J Biol Chem 273:8337-43

    CAS  PubMed  Google Scholar 

  • Luscher C, Jan LY, Stoffel M et al (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687-95

    CAS  PubMed  Google Scholar 

  • Macica CM, von Hehn CA, Wang LY et al (2003) Modulation of the kv3.1b potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons. J Neurosci 23:1133-41

    CAS  PubMed  Google Scholar 

  • Majewski H, Iannazzo L (1998) Protein kinase C: a physiological mediator of enhanced transmitter output. Prog Neurobiol 55:463-75

    CAS  PubMed  Google Scholar 

  • Mandell JW, Townes-Anderson E, Czernik AJ et al (1990a) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19-33

    CAS  Google Scholar 

  • Mandell JW, Townes-Anderson E, Czernik AJ et al (1990b) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19-33

    CAS  Google Scholar 

  • Mandell JW, Czernik AJ, De Camilli P et al (1992) Differential expression of synapsins I and II among rat retinal synapses. J Neurosci 12:1736-49

    CAS  PubMed  Google Scholar 

  • Marchetti C, Carbone E, and Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 406:104-11

    CAS  PubMed  Google Scholar 

  • Mark MD, Wittemann S, Herlitze S (2000) G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins. J Physiol 528 Pt 1:65-77

    Google Scholar 

  • Masuho I, Itoh M, Itoh H et al (2004) The mechanism of membrane-translocation of regulator of G-protein signaling (RGS) 8 induced by Galpha expression. J Neurochem 88:161-8

    CAS  PubMed  Google Scholar 

  • Matsubara M, Kusubata M, Ishiguro K et al (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271:21108-13

    CAS  PubMed  Google Scholar 

  • Melliti K, Meza U, Adams BA (2001) RGS2 blocks slow muscarinic inhibition of N-type Ca(2+) channels reconstituted in a human cell line. J Physiol 532:337-47

    CAS  PubMed  Google Scholar 

  • Mellor J, Nicoll RA, Schmitz D (2002) Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science 295:143-7

    CAS  PubMed  Google Scholar 

  • Millan C, Sanchez-Prieto J (2002) Differential coupling of N- and P/Q-type calcium channels to glutamate exocytosis in the rat cerebral cortex. Neurosci Lett 330:29-32

    CAS  PubMed  Google Scholar 

  • Millan C, Lujan R, Shigemoto R et al (2002) The inhibition of glutamate release by metabotropic glutamate receptor 7 affects both [Ca2+]c and cAMP: evidence for a strong reduction of Ca2+ entry in single nerve terminals. J Biol Chem 277:14092-101

    CAS  PubMed  Google Scholar 

  • Millan C, Castro E, Torres M et al (2003) Co-expression of metabotropic glutamate receptor 7 and N-type Ca(2+) channels in single cerebrocortical nerve terminals of adult rats. J Biol Chem 278:23955-62

    CAS  PubMed  Google Scholar 

  • Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201-27

    CAS  PubMed  Google Scholar 

  • Milosevic I, Sorensen JB, Lang T et al (2005) Plasmalemmal phosphatidylinositol-4,5- bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25:2557-65

    CAS  PubMed  Google Scholar 

  • Mirotznik RR, Zheng X, Stanley EF (2000) G-Protein types involved in calcium channel inhibition at a presynaptic nerve terminal. J Neurosci 20:7614-21

    CAS  PubMed  Google Scholar 

  • Misonou H, Ohara-Imaizumi M, Kumakura K (1997) Regulation of the priming of exocytosis and the dissociation of SNAP-25 and VAMP-2 in adrenal chromaffin cells. Neurosci Lett 232:182-4

    CAS  PubMed  Google Scholar 

  • Misonou H, Ohara-Imaizumi M, Murakami T et al (1998) Protein kinase C controls the priming step of regulated exocytosis in adrenal chromaffin cells. Cell Mol Neurobiol 18:379-90

    CAS  PubMed  Google Scholar 

  • Moldavan MG, Irwin RP, Allen CN (2006) Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels. J Neurophysiol 95:3727-41

    CAS  PubMed  Google Scholar 

  • Morgan A, Burgoyne RD (1992) Interaction between protein kinase C and Exo1 (14-3-3 protein) and its relevance to exocytosis in permeabilized adrenal chromaffin cells. Biochem J 286:807-11

    CAS  PubMed  Google Scholar 

  • Nagy G, Matti U, Nehring RB et al (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22:9278-86

    CAS  PubMed  Google Scholar 

  • Nagy G, Reim K, Matti U et al (2004) Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 41:417-29

    CAS  PubMed  Google Scholar 

  • Nagy G, Kim JH, Pang ZP et al (2006) Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 26:632-43

    CAS  PubMed  Google Scholar 

  • Naor Z, Dan-Cohen H, Hermon J et al (1989) Induction of exocytosis in permeabilized pituitary cells by alpha- and beta-type protein kinase C. Proc Natl Acad Sci USA 86:4501-4

    CAS  PubMed  Google Scholar 

  • Neitzel KL, Hepler JR (2006) Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling. Semin Cell Dev Biol 17:383-9

    CAS  PubMed  Google Scholar 

  • Nguyen PV, Woo NH (2003) Regulation of hippocampal synaptic plasticity by cyclic AMPdependent protein kinases. Prog Neurobiol 71:401-37

    CAS  PubMed  Google Scholar 

  • Nicoll RA, Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115-18

    CAS  PubMed  Google Scholar 

  • Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G proteincoupled receptors in living cells. Proc Natl Acad Sci USA 102:18706-11

    CAS  PubMed  Google Scholar 

  • Ohara-Imaizumi M, Kameyama K, Kawae N et al (1992) Regulatory role of the GTP-binding protein, G(o), in the mechanism of exocytosis in adrenal chromaffin cells. J Neurochem 58:2275-84

    CAS  PubMed  Google Scholar 

  • Okamoto M, S üdhof TC (1997) Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem 272:31459-64

    CAS  PubMed  Google Scholar 

  • Oldham WM, Hamm HE (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39:117-66

    CAS  PubMed  Google Scholar 

  • Orita S, Naito A, Sakaguchi G et al (1997) Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem 272:16081-4

    CAS  PubMed  Google Scholar 

  • Ozaki N, Shibasaki T, Kashima Y et al (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805-11

    CAS  PubMed  Google Scholar 

  • Park D, Dunlap K (1998) Dynamic regulation of calcium influx by G-proteins, action potential waveform, and neuronal firing frequency. J Neurosci 18:6757-66

    CAS  PubMed  Google Scholar 

  • Parsons TD, Coorssen JR, Horstmann H et al (1995) Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15:1085-96

    CAS  PubMed  Google Scholar 

  • Patil PG, de LM, Reed RR et al (1996) Elementary events underlying voltage-dependent G-protein inhibition of N-type calcium channels. Biophys J 71:2509-21

    CAS  PubMed  Google Scholar 

  • Peleg S, Varon D, Ivanina T et al (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron 33:87-99

    CAS  PubMed  Google Scholar 

  • Petrucci TC, Morrow JS (1987) Synapsin I: an actin-bundling protein under phosphorylation control. J Cell Biol 105:1355-63

    CAS  PubMed  Google Scholar 

  • Petrucci TC, Macioce P, Paggi P (1991) Axonal transport kinetics and posttranslational modification of synapsin I in mouse retinal ganglion cells. J Neurosci 11:2938-46

    CAS  PubMed  Google Scholar 

  • Pevsner J, Scheller RH (1994) Mechanisms of vesicle docking and fusion: insights from the nervous system. Curr Opin Cell Biol 6:555-60

    CAS  PubMed  Google Scholar 

  • Pevsner J, Hsu SC, Braun JE et al (1994a) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353-61

    CAS  Google Scholar 

  • Pevsner J, Hsu SC, Scheller RH (1994b) n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci USA 91:1445-9

    CAS  Google Scholar 

  • Pfrieger FW, Gottmann K, Lux HD (1994) Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron 12:97-107

    CAS  PubMed  Google Scholar 

  • Photowala H, Blackmer T, Schwartz E et al (2006) G protein betagamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proc Natl Acad Sci USA 103:4281-6

    CAS  PubMed  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L et al (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493-7

    CAS  PubMed  Google Scholar 

  • Pieribone VA, Porton B, Rendon B et al (2002) Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol 454:105-14

    CAS  PubMed  Google Scholar 

  • Ponce A, Bueno E, Kentros C et al (1996) G-protein-gated inward rectifier K+ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. J Neurosci 16:1990-2001

    CAS  PubMed  Google Scholar 

  • Prince DA, Stevens CF (1992) Adenosine decreases neurotransmitter release at central synapses. Proc Natl Acad Sci USA 89:8586-90

    CAS  PubMed  Google Scholar 

  • Qian J, Colmers WF, Saggau P (1997) Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+ entry. J Neurosci 17:8169-77

    CAS  PubMed  Google Scholar 

  • Queiroz G, Talaia C, Gonçalves J (2003) Adenosine A2A receptor-mediated facilitation of noradrenaline release involves protein kinase C activation and attenuation of presynaptic inhibitory receptor-mediated effects in the rat vas deferens. J Neurochem 85:740-8

    CAS  PubMed  Google Scholar 

  • Raingo J, Castiglioni AJ, Lipscombe D (2007) Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10:285-92

    CAS  PubMed  Google Scholar 

  • Ramakers GM, McNamara RK, Lenox RH et al (1999) Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growthassociated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression. J Neurochem 73:2175-83

    CAS  PubMed  Google Scholar 

  • Rhee JS, Betz A, Pyott S et al (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121-33

    CAS  PubMed  Google Scholar 

  • Richman RW, Strock J, Hains MD et al (2005) RGS12 interacts with the SNARE-binding region of the Cav2.2 calcium channel. J Biol Chem 280:1521-8

    CAS  PubMed  Google Scholar 

  • Rimon G, Hanski E, Braun S et al (1978) Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature 276:394-6

    CAS  PubMed  Google Scholar 

  • Risinger C, Bennett MK (1999) Differential phosphorylation of syntaxin and synaptosomeassociated protein of 25 kDa (SNAP-25) isoforms. J Neurochem 72:614-24

    CAS  PubMed  Google Scholar 

  • Robinson PJ (1991) The role of protein kinase C and its neuronal substrates dephosphin, B-50, and MARCKS in neurotransmitter release. Mol Neurobiol 5:87-130

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Dunkley PR (1983) Depolarisation-dependent protein phosphorylation in rat cortical synaptosomes: factors determining the magnitude of the response. J Neurochem 41:909-18

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Dunkley PR (1985) Depolarisation-dependent protein phosphorylation and dephos- phorylation in rat cortical synaptosomes is modulated by calcium. J Neurochem 44:338-48

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Dunkley PR (1987) Altered protein phosphorylation in intact rat cortical synaptosomes after in vivo administration of fluphenazine. Biochem. Pharmacol 36:2203-8

    CAS  PubMed  Google Scholar 

  • Rodriguez-Moreno A, Sihra TS (2004) Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J Physiol 557:733-45

    CAS  PubMed  Google Scholar 

  • Romano C, Nichols RA, Greengard P (1987a) Synapsin I in PC12 cells. II. Evidence for regulation by NGF of phosphorylation at a novel site. J Neurosci 7:1300-6

    CAS  Google Scholar 

  • Romano C, Nichols RA, Greengard P et al (1987b) Synapsin I in PC12 cells. I. Characterization of the phosphoprotein and effect of chronic NGF treatment. J Neurosci 7:1294-9

    CAS  Google Scholar 

  • Rosahl TW, Geppert M, Spillane D et al (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75:661-70

    CAS  PubMed  Google Scholar 

  • Rosahl TW, Spillane D, Missler M et al (1995) Essential functions of synapsins I and II in synaptic vesicle regulation [see comments]. Nature 375:488-93

    CAS  PubMed  Google Scholar 

  • Rose SD, Lejen T, Zhang L et al (2001) Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phorbol esters is mediated through myristoylated alanine-rich C kinase substrate phosphorylation. J Biol Chem 276:36757-63

    CAS  PubMed  Google Scholar 

  • Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16:1197-1207

    CAS  PubMed  Google Scholar 

  • Rosenzweig DH, Nair KS, Wei J et al (2007) Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins. J Neurosci 27:5484-94

    CAS  PubMed  Google Scholar 

  • Ruiz-Velasco V, Ikeda SR (2000) Multiple G-protein betagamma combinations produce voltagedependent inhibition of N-type calcium channels in rat superior cervical ganglion neurons. J Neurosci 20:2183-91

    CAS  PubMed  Google Scholar 

  • Saitoh O, Kubo Y, Miyatani Y et al (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 390:525-9

    CAS  PubMed  Google Scholar 

  • Saitoh O, Masuho I, Terakawa I et al (2001) Regulator of G protein signaling 8 (RGS8) requires its NH2 terminus for subcellular localization and acute desensitization of G protein-gated K+ channels. J Biol Chem 276:5052-8

    CAS  PubMed  Google Scholar 

  • Saitoh O, Murata Y, Odagiri M et al (2002) Alternative splicing of RGS8 gene determines inhibitory function of receptor type-specific Gq signaling. Proc Natl Acad Sci USA 99:10138-43

    CAS  PubMed  Google Scholar 

  • Saitow F, Suzuki H, Konishi S (2005) beta-Adrenoceptor-mediated long-term up-regulation of the release machinery at rat cerebellar GABAergic synapses. J Physiol 565:487-502

    CAS  PubMed  Google Scholar 

  • Sakaba T, Neher E (2001) Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. Proc Natl Acad Sci U S A 98:331-6

    CAS  PubMed  Google Scholar 

  • Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 424:775-8

    CAS  PubMed  Google Scholar 

  • Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797-803

    CAS  PubMed  Google Scholar 

  • Sanchez-Prieto J, Budd DC, Herrero I et al (1996) Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci 19:235-9

    CAS  PubMed  Google Scholar 

  • Sara Y, Virmani T, Deak F et al (2005) An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45:563-73

    CAS  PubMed  Google Scholar 

  • Sato M, Blumer JB, Simon V et al (2006) Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol 46:151-87

    CAS  PubMed  Google Scholar 

  • Scanziani M, Capogna M, Gahwiler BH et al (1992) Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9:919-27

    CAS  PubMed  Google Scholar 

  • Scanziani M, Gahwiler BH, Thompson SM (1995) Presynaptic inhibition of excitatory synapic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 34:1549-1775

    CAS  PubMed  Google Scholar 

  • Scheller RH (1995) Membrane trafficking in the presynaptic nerve terminal. Neuron 14:893897

    Google Scholar 

  • Schiavo G, Gu QM, Prestwich GD et al (1996) Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc Natl Acad Sci USA 93:13327-32

    CAS  PubMed  Google Scholar 

  • Schiebler W, Jahn R, Doucet JP et al (1986) Characterization of synapsin I binding to small synaptic vesicles [published erratum appears in J Biol Chem 1986 Sep 15; 261(26):12428]. J Biol Chem 261:8383-90

    CAS  PubMed  Google Scholar 

  • Schluter OM, Schnell E, Verhage M et al (1999) Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J Neurosci 19:5834-46

    CAS  PubMed  Google Scholar 

  • Schluter OM, Schmitz F, Jahn R et al (2004) A complete genetic analysis of neuronal Rab3 function. J Neurosci 24:6629-37

    PubMed  Google Scholar 

  • Schneggenburger R, Forsythe ID (2006) The calyx of Held. Cell Tissue Res 326:311-37

    PubMed  Google Scholar 

  • Schneider T, Igelmund P, Hescheler J (1997) G protein interaction with K+ and Ca2+ channels. Trends PharmacolSci 18:8-11

    CAS  Google Scholar 

  • Schoch S, Castillo PE, Jo T et al (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321-6

    CAS  PubMed  Google Scholar 

  • Scholz KP, Miller RJ (1992) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139-50

    CAS  PubMed  Google Scholar 

  • Scholze T, Moskvina E, Mayer M et al (2002) Sympathoexcitation by bradykinin involves Ca2+independent protein kinase C. J Neurosci 22:5823-32

    CAS  PubMed  Google Scholar 

  • Schwartz EJ, Blackmer T, Gerachshenko T et al (2007) Presynaptic G-protein-coupled receptors regulate synaptic cleft glutamate via transient vesicle fusion. J Neurosci 27:5857-68

    CAS  PubMed  Google Scholar 

  • Searl TJ, Silinsky EM (1998) Increases in acetylcholine release produced by phorbol esters are not mediated by protein kinase C at motor nerve endings. J Pharmacol Exp Ther 285:247-51

    CAS  PubMed  Google Scholar 

  • Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303-42

    CAS  PubMed  Google Scholar 

  • Shen J, Tareste DC, Paumet F et al (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183-95

    CAS  PubMed  Google Scholar 

  • Shimazaki Y, Nishiki T, Omori A et al (1996) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548-53

    CAS  PubMed  Google Scholar 

  • Shirataki H, Kaibuchi K, Sakoda T et al (1993) Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol 13:2061-8

    CAS  PubMed  Google Scholar 

  • Shoji-Kasai Y, Itakura M, Kataoka M et al (2002) Protein kinase C-mediated translocation of secretory vesicles to plasma membrane and enhancement of neurotransmitter release from PC12 cells. Eur J Neurosci 15:1390-4

    PubMed  Google Scholar 

  • Sieghart W, Schulman H, Greengard P (1980) Neuronal localization of Ca2+-dependent protein phosphorylation in brain. J Neurochem 34:548-53

    CAS  PubMed  Google Scholar 

  • Sihra TS (1993) Glutamate release from isolated nerve terminals: modulatory role of protein phosphorylation and dephosphorylation. Biochem Soc Trans 21:410-16

    CAS  PubMed  Google Scholar 

  • Sihra TS, Wang JK, Gorelick FS et al (1989) Translocation of synapsin I in response to depolarization of isolated nerve terminals. Proc Natl Acad Sci USA 86:8108-12

    CAS  PubMed  Google Scholar 

  • Sihra TS, Bogonez E, Nicholls DG (1992) Localized Ca2+ entry preferentially effects protein dephosphorylation, phosphorylation, and glutamate release. J Biol Chem 267:1983-9

    CAS  PubMed  Google Scholar 

  • Silinsky EM (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol 346:243-56

    CAS  PubMed  Google Scholar 

  • Silinsky EM, Searl TJ (2003) Phorbol esters and neurotransmitter release: more than just protein kinase C? Br J Pharmacol 138:1191-1201

    CAS  PubMed  Google Scholar 

  • Smith C (1999) A persistent activity-dependent facilitation in chromaffin cells is caused by Ca2+ activation of protein kinase C. J Neurosci 19:589-98

    CAS  PubMed  Google Scholar 

  • Smith C, Moser T, Xu T et al (1998) Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20:1243-53

    CAS  PubMed  Google Scholar 

  • Sorensen JB, Matti U, Wei SH et al (2002) The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA 99:1627-32

    CAS  PubMed  Google Scholar 

  • Southan AP, Morris NP, Stephens GJ et al (2000) Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells. J Physiol 526 Pt 1:91-7

    Google Scholar 

  • Spencer SA, Schuh SM, Liu WS et al (1992) GAP-43, a protein associated with axon growth, is phosphorylated at three sites in cultured neurons and rat brain. J Biol Chem 267:9059-64

    CAS  PubMed  Google Scholar 

  • Springett GM, Kawasaki H, Spriggs DR (2004) Non-kinase second-messenger signaling: new pathways with new promise. Bioessays 26:730-8

    CAS  PubMed  Google Scholar 

  • Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47-179

    CAS  PubMed  Google Scholar 

  • Stea A, Soong TW, Snutch TP (1995) Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15:929-40

    CAS  PubMed  Google Scholar 

  • Stephens GJ, Mochida S (2005) G protein {beta}{gamma} subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 563:765-76

    CAS  PubMed  Google Scholar 

  • Stevens CF, Sullivan JM (1998) Regulation of the readily releasable vesicle pool by protein kinase C. Neuron 21:885-93

    CAS  PubMed  Google Scholar 

  • Stone LM, Browning MD, Finger TE (1994) Differential distribution of the synapsins in the rat olfactory bulb. J Neurosci 14:301-9

    CAS  PubMed  Google Scholar 

  • Storm DR, Hansel C, Hacker B et al (1998) Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20:1199-1210

    CAS  PubMed  Google Scholar 

  • Strittmatter SM, Valenzuela D, Kennedy TE et al (1990) G0 is a major growth cone protein subject to regulation by GAP-43. Nature 344:836-41

    CAS  PubMed  Google Scholar 

  • Strock J, Diverse-Pierluissi MA (2004) Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol Pharmacol 66:1071-6

    CAS  PubMed  Google Scholar 

  • S üdhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645-53

    Google Scholar 

  • S üdhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28:317-20

    Google Scholar 

  • S üdhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509-47

    Google Scholar 

  • S üdhof TC, Czernik AJ, Kao HT et al (1989) Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245:1474-80

    Google Scholar 

  • Suh BC, Horowitz LF, Hirdes W et al (2004) Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol 123:663-83

    CAS  PubMed  Google Scholar 

  • Surprenant A, North RA (1988) Mechanism of synaptic inhibition by noradrenaline acting at alpha 2-adrenoceptors. Proc R Soc Lond B Biol Sci 234:85-114

    CAS  PubMed  Google Scholar 

  • Takahashi T, Forsythe ID, Tsujimoto T et al (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594-7

    CAS  PubMed  Google Scholar 

  • Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-Protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18:3138-46

    CAS  PubMed  Google Scholar 

  • Takahashi M, Itakura M, Kataoka M (2003) New aspects of neurotransmitter release and exocytosis: regulation of neurotransmitter release by phosphorylation. J Pharmacol Sci 93:41-5

    CAS  PubMed  Google Scholar 

  • Takano K, Stanfield PR, Nakajima S et al (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron 14:999-1008

    CAS  PubMed  Google Scholar 

  • Takei Y, Harada A, Takeda S et al (1995) Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. J Cell Biol 131:1789-1800

    CAS  PubMed  Google Scholar 

  • Tedford HW, Zamponi GW (2006) Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev 58:837-62

    CAS  PubMed  Google Scholar 

  • Terbush DR, Holz RW (1986) Effects of phorbol esters, diglyceride, and cholinergic agonists on the subcellular distribution of protein kinase C in intact or digitonin-permeabilized adrenal chromaffin cells. J Biol Chem 261:17099-106

    CAS  PubMed  Google Scholar 

  • Terbush DR, Holz RW (1990) Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells. The effects of protein kinase C(19-31), Ca/CaM kinase II(291@@317), and staurosporine. J Biol Chem 265:21179-84

    CAS  PubMed  Google Scholar 

  • Tesmer VM, Kawano T, Shankaranarayanan A et al (2005) Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science 310:1686-90

    CAS  PubMed  Google Scholar 

  • Thakur P, Stevens DR, Sheng ZH et al (2004) Effects of PKA-mediated phosphorylation of Snapin on synaptic transmission in cultured hippocampal neurons. J Neurosci 24:6476-81

    CAS  PubMed  Google Scholar 

  • Thompson SM, Capogna M, Scanziani M (1993) Presynaptic inhibition in the hippocampus. Trends Neurosci 16:222-7

    CAS  PubMed  Google Scholar 

  • Tinker A (2006) The selective interactions and functions of regulators of G-protein signalling. Semin Cell Dev Biol 17:377-82

    CAS  PubMed  Google Scholar 

  • Toonen RF, Verhage M (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol 13:177-86

    CAS  PubMed  Google Scholar 

  • Torri-Tarelli F, Villa A, Valtorta F et al (1990) Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J Cell Biol 110:449-59

    CAS  PubMed  Google Scholar 

  • Toth PT, Bindokas VP, Bleakman D et al (1993) Mechanism of presynaptic inhibition by neuropeptide Y at sympathetic nerve terminals. Nature 364:635-9

    CAS  PubMed  Google Scholar 

  • Toutant M, Aunis D, Bockaert J et al (1987) Presence of three pertussis toxin substrates and Go alpha immunoreactivity in both plasma and granule membranes of chromaffin cells. FEBS Lett 215:339-44

    CAS  PubMed  Google Scholar 

  • Trautwein W, Osterrieder W, and Noma A (1980) Potassium channels and the muscarinic receptor in the sino-atrial node of the heart in Drug Receptors and their Effectors, ed. N.J.M. Birdsall (New York: Macmillan) pp 5-22

    Google Scholar 

  • Trifaro JM, Lejen T, Rose SD et al (2002) Pathways that control cortical F-actin dynamics during secretion. Neurochem Res 27:1371-85

    CAS  PubMed  Google Scholar 

  • Trudeau LE, Doyle RT, Emery DG et al (1996a) Calcium-independent activation of the secretory apparatus by ruthenium red in hippocampal neurons: a new tool to assess modulation of presynaptic function. J Neurosci 16:46-54

    CAS  Google Scholar 

  • Trudeau LE, Emery DG, Haydon PG (1996b) Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron 17:789-97

    CAS  Google Scholar 

  • Trudeau LE, Fang Y, and Haydon PG (1998) Modulation of an early step in the secretory machinery in hippocampal nerve terminals. Proc Natl Acad Sci USA 95:7163-8

    CAS  PubMed  Google Scholar 

  • Tsuboi T, Kikuta T, Warashina A et al (2001) Protein kinase C-dependent supply of secretory granules to the plasma membrane. Biochem Biophys Res Commun 282:621-8

    CAS  PubMed  Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. Proc Natl Acad Sci USA 83:9832-6

    CAS  PubMed  Google Scholar 

  • Turner KM, Burgoyne RD, Morgan A (1999) Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci 22:459-64

    CAS  PubMed  Google Scholar 

  • Valtorta F, Villa A, Jahn R et al (1988) Localization of synapsin I at the frog neuromuscular junction. Neuroscience 24:593-603

    CAS  PubMed  Google Scholar 

  • Verona M, Zanotti S, Schafer T et al (2000) Changes of synaptotagmin interaction with t-SNARE proteins in vitro after calcium/calmodulin-dependent phosphorylation. J Neurochem 74:209-21

    CAS  PubMed  Google Scholar 

  • Villacres EC, Wong ST, Chavkin C et al (1998) Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J Neurosci 18:3186-94

    CAS  PubMed  Google Scholar 

  • Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353-63

    CAS  PubMed  Google Scholar 

  • Vitale N, Gasman S, Caumont AS et al (2000) Insight in the exocytotic process in chromaffin cells: regulation by trimeric and monomeric G proteins. Biochimie. 82:365-73

    CAS  PubMed  Google Scholar 

  • Walaas SI, Nairn AC, Greengard P (1983) Regional distribution of calcium- and cyclic adenosine 3′ : 5 -monophosphate-regulated protein phosphorylation systems in mammalian brain. I. Particulate systems. J Neurosci 3:291-301

    CAS  Google Scholar 

  • Wang C, Zucker RS (1998) Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21:155-67

    CAS  PubMed  Google Scholar 

  • Wang HS, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485 (Pt 2):319-35

    CAS  PubMed  Google Scholar 

  • Wang JK, Walaas SI, Sihra TS et al (1989) Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Proc Natl Acad Sci USA 86:2253-6

    CAS  PubMed  Google Scholar 

  • Wang SJ, Sihra TS (2003) Opposing facilitatory and inhibitory modulation of glutamate release elicited by cAMP production in cerebrocortical nerve terminals (synaptosomes). Neuropharm 44:686-97

    CAS  Google Scholar 

  • Wang SJ, Coutinho V, Sihra TS (2002) Presynaptic cross-talk of beta-adrenoreceptor and 5-hydroxytryptamine receptor signalling in the modulation of glutamate release from cerebrocortical nerve terminals. Br J Pharmacol 137:1371-9

    CAS  PubMed  Google Scholar 

  • Wang X, Zeng W, Soyombo AA et al (2005) Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 7:405-11

    CAS  PubMed  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F et al (1997) Rim is a putative Rab3 effector in regulating synapticvesicle fusion. Nature 388:593-8

    CAS  PubMed  Google Scholar 

  • Weisskopf MG, Castillo PE, Zalutsky RA et al (1994) Mediation of hippocampal mossy fiber longterm potentiation by cyclic AMP. Science 265:1878-82

    CAS  PubMed  Google Scholar 

  • Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159-1204

    CAS  PubMed  Google Scholar 

  • Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiol Rev 75:865-85

    CAS  PubMed  Google Scholar 

  • Wiedemann C, Sch äfer T, Burger MM et al (1998) An essential role for a small synaptic vesicleassociated phosphatidylinositol 4-linase in meurotransmitter release. J Neurosci 18:5594-5602

    CAS  PubMed  Google Scholar 

  • Wierda KD, Toonen RF, de WH et al (2007) Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54:275-90

    CAS  PubMed  Google Scholar 

  • Willars GB (2006) Mammalian RGS proteins: multifunctional regulators of cellular signalling. Semin Cell Dev Biol 17:363-76

    CAS  PubMed  Google Scholar 

  • Wu L, Bauer CS, Zhen XG et al (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947-52

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1994) Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139-48

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1995) GABAB receptor-mediated presynaptic inhibition in guinea-pig hippocampus is caused by reduction of presynaptic Ca2+ influx. J Physiol 485:649-57

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204-12

    CAS  PubMed  Google Scholar 

  • Wu XS, Wu LG (2001) Protein kinase c increases the apparent affinity of the release machinery to Ca2+ by enhancing the release machinery downstream of the Ca2+ sensor. J Neurosci 21:7928-36

    CAS  PubMed  Google Scholar 

  • Xu T, Binz T, Niemann H et al (1998) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci 1:192-200

    CAS  PubMed  Google Scholar 

  • Xu T, Ashery U, Burgoyne RD et al (1999a) Early requirement for alpha-SNAP and NSF in the secretory cascade in chromaffin cells. EMBO J 18:3293-3304

    CAS  Google Scholar 

  • Xu X, Zeng W, Popov S et al (1999b) RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274:3549-56

    CAS  Google Scholar 

  • Yan Y, Chi PP, Bourne HR (1997) RGS4 inhibits Gq-mediated activation of mitogen-activated protein kinase and phosphoinositide synthesis. J Biol Chem 272:11924-7

    CAS  PubMed  Google Scholar 

  • Yang Y, Udayasankar S, Dunning J et al (2002) A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. Proc Natl Acad Sci USA 99:17060-5

    CAS  PubMed  Google Scholar 

  • Yang Y, Craig TJ, Chen X et al (2007) Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis. J Gen Physiol 129:233-44

    CAS  PubMed  Google Scholar 

  • Yawo H (1999a) Protein kinase C potentiates transmitter release from the chick ciliary presynaptic terminal by increasing the exocytotic fusion probability. J Physiol 515:169-80

    CAS  Google Scholar 

  • Yawo H (1999b) Two components of transmitter release from the chick ciliary presynaptic terminal and their regulation by protein kinase C. J Physiol 516:461-70

    CAS  Google Scholar 

  • Yawo H, Chuhma N (1993) Preferential inhibition of omega-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 365:256-8

    CAS  PubMed  Google Scholar 

  • Zhang X, Kim-Miller MJ, Fukuda M et al (2002) Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34:599-611

    CAS  PubMed  Google Scholar 

  • Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401:371-5

    CAS  PubMed  Google Scholar 

  • Zhong N, Zucker RS (2004) Roles of Ca2+, hyperpolarization and cyclic nucleotide-activated channel activation, and actin in temporal synaptic tagging. JNeurosci 24:4205-12

    CAS  Google Scholar 

  • Zhong N, Beaumont V, Zucker RS (2004) Calcium influx through HCN channels does not contribute to cAMP-enhanced transmission. J Neurophysiol 92:644-7

    CAS  PubMed  Google Scholar 

  • Zhou JY, Siderovski DP, Miller RJ (2000) Selective regulation of N-type Ca channels by different combinations of G-protein beta/gamma subunits and RGS proteins. J Neurosci 20:7143-8

    CAS  PubMed  Google Scholar 

  • Zhu H, Hille B, Xu T (2002) Sensitization of regulated exocytosis by protein kinase C. Proc Natl Acad Sci USA 99:17055-9

    CAS  PubMed  Google Scholar 

  • Zucker RS (1993) Calcium and transmitter release. J Physiol (Paris) 87:25-36

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, D.A., Sihra, T.S. (2008). Presynaptic Signaling by Heterotrimeric G-Proteins. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_8

Download citation

Publish with us

Policies and ethics