Skip to main content

Proline-Rich Sequence Recognition Domains (PRD): Ligands, Function and Inhibition

  • Chapter
Protein-Protein Interactions as New Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

Low-affinity protein-protein interactions (PPI) between domains of modular proteins and short, solvent-exposed peptide sequences within their binding partners play an essential role in intracellular signaling. An important class of PPIs comprises proline-rich motifs (PRM) that are specifically recognized by PRM-binding domains (PRD). Aromatic side chains of the PRDs define the binding pockets that often recognize individual proline residues, while flanking sequences mediate specificity. Several of these PRM:PRD interactions are associated with cellular malfunction, cancer or infectious diseases. Thus, the design of PRM:PRD inhibitors by using structure-based molecular modeling as well as peptidomimetic approaches and high-throughput screening strategies is of great pharmacological interest. In this chapter we describe the molecular basis of PRM:PRD interactions, highlight their functional role in certain cellular processes and give an overview of recent strategies of inhibitor design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzhubei AA, Sternberg MJ (1993) Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 229:472–493

    PubMed  CAS  Google Scholar 

  • Al Dhaheri MH, Shah YM, Basrur V, Pind S, Rowan BG (2006) Identification of novel proteins induced by estradiol, 4-hydroxytamoxifen and acolbifene in T47D breast cancer cells. Steroids 71:966–978

    PubMed  CAS  Google Scholar 

  • Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM (2005) WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 65:6764–6772

    PubMed  CAS  Google Scholar 

  • Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    PubMed  CAS  Google Scholar 

  • Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted AC (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci USA 100:1603–1608

    PubMed  CAS  Google Scholar 

  • Babst M (2005) A protein’s final ESCRT. Traffic 6:2–9

    PubMed  CAS  Google Scholar 

  • Ball LJ, Kuhne R, Schneider-Mergener J, Oschkinat H (2005) Recognition of proline-rich motifs by protein–protein-interaction domains. Angew Chem Int Ed Engl 44:2852–2869

    PubMed  CAS  Google Scholar 

  • Bandur NG, Harms K, Koert U (2005) First stereoselective synthesis of a pro-pro E-alkene dipeptide isostere. Synlett 773–776

    Google Scholar 

  • Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521

    PubMed  CAS  Google Scholar 

  • Bedford MT, Chan DC, Leder P (1997) FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J 16:2376–2383

    PubMed  CAS  Google Scholar 

  • Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P, Richard S (2000) Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem 275:16030–16036

    PubMed  CAS  Google Scholar 

  • Ben Yosef R, Starr A, Karaush V, Loew V, Lev-Ari S, Barnea I, Lidawi G, Shtabsky A, Greif Y, Yarden Y, Vexler A (2007) ErbB-4 may control behavior of prostate cancer cells and serve as a target for molecular therapy. Prostate 67:871–880

    PubMed  CAS  Google Scholar 

  • Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280:35119–35125

    PubMed  CAS  Google Scholar 

  • Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344:55–63

    PubMed  CAS  Google Scholar 

  • Bleicher KH, Bohm HJ, Muller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    PubMed  CAS  Google Scholar 

  • Bochicchio B, Tamburro AM (2002) Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 14:782–792

    PubMed  CAS  Google Scholar 

  • Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23:7918–7927

    PubMed  CAS  Google Scholar 

  • Bork P, Sudol M (1994) The WW domain: a signalling site in dystrophin? Trends Biochem Sci 19:531–533

    PubMed  CAS  Google Scholar 

  • Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115:465–483

    PubMed  CAS  Google Scholar 

  • Carstens MJ, Krempler A, Triplett AA, Van Lohuizen M, Wagner KU (2004) Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J Biol Chem 279:35984–35994

    PubMed  CAS  Google Scholar 

  • Cesareni G, Panni S, Nardelli G, Castagnoli L (2002) Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett 513:38–44

    PubMed  CAS  Google Scholar 

  • Chakraborty T, Ebel F, Domann E, Niebuhr K, Gerstel B, Pistor S, Temm-Grove CJ, Jockusch BM, Reinhard M, Walter U (1995) A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14:1314–1321

    PubMed  CAS  Google Scholar 

  • Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ (2003) SAP couples Fyn to SLAM immune receptors. Nat Cell Biol 5:155–160

    PubMed  CAS  Google Scholar 

  • Chin J, Palop JJ, Puolivali J, Massaro C, Bien-Ly N, Gerstein H, Scearce-Levie K, Masliah E, Mucke L (2005) Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 25:9694–9703

    PubMed  CAS  Google Scholar 

  • Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386

    PubMed  CAS  Google Scholar 

  • Cubellis MV, Caillez F, Blundell TL, Lovell SC (2005) Properties of polyproline II, a secondary structure element implicated in protein–protein interactions. Proteins 58:880–892

    PubMed  CAS  Google Scholar 

  • de Bakker PI, Bateman A, Burke DF, Miguel RN, Mizuguchi K, Shi J, Shirai H, Blundell TL (2001) HOMSTRAD: adding sequence information to structure-based alignments of homologous protein families. Bioinformatics 17:748–749

    PubMed  Google Scholar 

  • Demirov DG, Ono A, Orenstein JM, Freed EO (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci USA 99:955–960

    PubMed  CAS  Google Scholar 

  • Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain Cell 103:351–361

    PubMed  CAS  Google Scholar 

  • Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 79:635–644

    Google Scholar 

  • Derry JM, Kerns JA, Weinberg KI, Ochs HD, Volpini V, Estivill X, Walker AP, Francke U (1995) WASP gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Hum Mol Genet 4:1127–1135

    PubMed  CAS  Google Scholar 

  • Dev KK (2004) Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3:1047–1056

    PubMed  CAS  Google Scholar 

  • Doi M, Nishi Y, Uchiyama S, Nishiuchi Y, Nishio H, Nakazawa T, Ohkubo T, Kobayashi Y (2005) Collagen-like triple helix formation of synthetic (Pro-Pro-Gly) 10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly) 10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly) 10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly) 10. J Pept Sci 11:609–616

    PubMed  CAS  Google Scholar 

  • Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, Desai N, Widder P, Rosenberger F, van der Merwe PA, Allen PM, Shaw AS (1998) A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94:667–677

    PubMed  CAS  Google Scholar 

  • Fischer PM, Lane DP (2004) Small-molecule inhibitors of the p53 suppressor HDM2: have protein–protein interactions come of age as drug targets? Trends Pharmacol Sci 25:343–346

    PubMed  CAS  Google Scholar 

  • Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J Immunol Methods 267:13–26

    PubMed  CAS  Google Scholar 

  • Freund C, Dotsch V, Nishizawa K, Reinherz EL, Wagner G (1999) The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences. Nat Struct Biol 6:656–660

    PubMed  CAS  Google Scholar 

  • Freund C, Kuhne R, Yang H, Park S, Reinherz EL, Wagner G (2002) Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. EMBO J 21:5985–5995

    PubMed  CAS  Google Scholar 

  • Fukai I, Hussey RE, Sunder-Plassmann R, Reinherz EL (2000) A critical role for p59(fyn) in CD2-based signal transduction. Eur J Immunol 30:3507–3515

    PubMed  CAS  Google Scholar 

  • Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65

    PubMed  CAS  Google Scholar 

  • Goila-Gaur R, Demirov DG, Orenstein JM, Ono A, Freed EO (2003) Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. J Virol 77:6507–6519

    PubMed  CAS  Google Scholar 

  • Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 21:7617–7628

    PubMed  CAS  Google Scholar 

  • Golemi-Kotra D, Mahaffy R, Footer MJ, Holtzman JH, Pollard TD, Theriot JA, Schepartz A (2004) High affinity, paralog-specific recognition of the Mena EVH1 domain by a miniature protein. J Am Chem Soc 126:4–5

    PubMed  CAS  Google Scholar 

  • Gorina S, Pavletich NP (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274:1001–1005

    PubMed  CAS  Google Scholar 

  • Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA 88:3195–3199

    PubMed  CAS  Google Scholar 

  • Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    PubMed  CAS  Google Scholar 

  • Harkiolaki M, Lewitzky M, Gilbert RJ, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moarefi I, Feller SM (2003) Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76. EMBO J 22:2571–2582

    PubMed  CAS  Google Scholar 

  • Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114:3219–3231

    PubMed  CAS  Google Scholar 

  • He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC (2005) Small-molecule inhibition of TNF-alpha. Science 310:1022–1025

    PubMed  CAS  Google Scholar 

  • Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653

    PubMed  CAS  Google Scholar 

  • Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Neri C (2001) The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 98:1811–1816

    PubMed  CAS  Google Scholar 

  • Holmgren SK, Bretscher LE, Taylor KM, Raines RT (1999) A hyperstable collagen mimic. Chem Biol 6:63–70

    PubMed  CAS  Google Scholar 

  • Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    PubMed  CAS  Google Scholar 

  • Huang M, Orenstein JM, Martin MA, Freed EO (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69:6810–6818

    PubMed  CAS  Google Scholar 

  • Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298

    PubMed  CAS  Google Scholar 

  • Ilsley JL, Sudol M, Winder SJ (2002) The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal 14:183–189

    PubMed  CAS  Google Scholar 

  • Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23:1972–1984

    PubMed  CAS  Google Scholar 

  • Inglis SR, Stojkoski C, Branson KM, Cawthray JF, Fritz D, Wiadrowski E, Pyke SM, Booker GW (2004) Identification and specificity studies of small-molecule ligands for SH3 protein domains. J Med Chem 47:5405–5417

    PubMed  CAS  Google Scholar 

  • Inglis SR, Jones RK, Booker GW, Pyke SM (2006) Synthesis of N-benzylated-2-aminoquinolines as ligands for the Tec SH3 domain. Bioorg Med Chem Lett 16:387–390

    PubMed  CAS  Google Scholar 

  • Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, Harkonen P, Joensuu H, Isola J, Elenius K (2005) Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res 65:1384–1393

    PubMed  CAS  Google Scholar 

  • Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8:407–412

    PubMed  CAS  Google Scholar 

  • Karkkainen S, Hiipakka M, Wang JH, Kleino I, Vaha-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K (2006) Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep 7:186–191

    PubMed  Google Scholar 

  • Kaushik N, Fear D, Richards SC, McDermott CR, Nuwaysir EF, Kellam P, Harrison TJ, Wilkinson RJ, Tyrrell DA, Holgate ST, Kerr JR (2005) Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J Clin Pathol 58:826–832

    PubMed  CAS  Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    PubMed  CAS  Google Scholar 

  • Kentsis A, Mezei M, Gindin T, Osman R (2004) Unfolded state of polyalanine is a segmented polyproline II helix. Proteins 55:493–501

    PubMed  CAS  Google Scholar 

  • Kim HH, Tharayil M, Rudd CE (1998) Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J Biol Chem 273:296–301

    PubMed  CAS  Google Scholar 

  • Kofler MM, Freund C (2006) The GYF domain. FEBS J 273:245–256

    PubMed  CAS  Google Scholar 

  • Kofler M, Heuer K, Zech T, Freund C (2004) Recognition sequences for the GYF domain reveal a possible spliceosomal function of CD2BP2. J Biol Chem 279:28292–28297

    PubMed  CAS  Google Scholar 

  • Kofler M, Motzny K, Freund C (2005) GYF Domain proteomics reveals interaction sites in known and novel target proteins. Mol Cell Proteomics 4:1797–1811

    PubMed  CAS  Google Scholar 

  • Kolluri R, Shehabeldin A, Peacocke M, Lamhonwah AM, Teichert-Kuliszewska K, Weissman SM, Siminovitch KA (1995) Identification of WASP mutations in patients with Wiskott-Aldrich syndrome and isolated thrombocytopenia reveals allelic heterogeneity at the WAS locus. Hum Mol Genet 4:1119–1126

    PubMed  CAS  Google Scholar 

  • Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278:33334–33341

    PubMed  CAS  Google Scholar 

  • Krempler A, Henry MD, Triplett AA, Wagner KU (2002) Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J Biol Chem 277:43216–43223

    PubMed  CAS  Google Scholar 

  • Laggerbauer B, Liu S, Makarov E, Vornlocher HP, Makarova O, Ingelfinger D, Achsel T, Luhrmann R (2005) The human U5 snRNP 52 K protein (CD2BP2) interacts with U5–102 K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA 11:598–608

    PubMed  CAS  Google Scholar 

  • Laurent V, Loisel TP, Harbeck B, Wehman A, Grobe L, Jockusch BM, Wehland J, Gertler FB, Carlier MF (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol 144:1245–1258

    PubMed  CAS  Google Scholar 

  • Lawrence DS (2005) Signaling protein inhibitors via the combinatorial modification of peptide scaffolds. Biochim Biophys Acta 1754:50–57

    PubMed  CAS  Google Scholar 

  • Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111( Pt 21):3167–3177

    PubMed  CAS  Google Scholar 

  • Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    PubMed  CAS  Google Scholar 

  • Li H, Lawrence DS (2005) Acquisition of Fyn-selective SH3 domain ligands via a combinatorial library strategy. Chem Biol 12:905–912

    PubMed  CAS  Google Scholar 

  • Lim WA (1996) Reading between the lines: SH3 recognition of an intact protein. Structure 4:657–659

    PubMed  CAS  Google Scholar 

  • Lin H, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer BE (1998) Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 273:19914–19921

    PubMed  CAS  Google Scholar 

  • Liu Q, Berry D, Nash P, Pawson T, McGlade CJ, Li SS (2003) Structural basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide: a novel mode of peptide recognition. Mol Cell 11:471–481

    PubMed  CAS  Google Scholar 

  • Liu F, Stephen AG, Adamson CS, Gousset K, Aman MJ, Freed EO, Fisher RJ, Burke TR, Jr. (2006) Hydrazone- and hydrazide-containing N-substituted glycines as peptoid surrogates for expedited library synthesis: application to the preparation of Tsg101-directed HIV-1 budding antagonists. Org Lett 8:5165–5168

    PubMed  CAS  Google Scholar 

  • Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283:1325–1328

    PubMed  CAS  Google Scholar 

  • Lubs H, Abidi FE, Echeverri R, Holloway L, Meindl A, Stevenson RE, Schwartz CE (2006) Golabi-Ito-Hall syndrome results from a missense mutation in the WW domain of the PQBP1 gene. J Med Genet 43:e30

    PubMed  CAS  Google Scholar 

  • Macias MJ, Hyvonen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382:646–649

    PubMed  CAS  Google Scholar 

  • Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    PubMed  CAS  Google Scholar 

  • Mezei M, Fleming PJ, Srinivasan R, Rose GD (2004) Polyproline II helix is the preferred conformation for unfolded polyalanine in water. Proteins 55:502–507

    PubMed  CAS  Google Scholar 

  • Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci 7:2469–2471

    PubMed  CAS  Google Scholar 

  • Montclare JK, Schepartz A (2003) Miniature homeodomains: high specificity without an N-terminal arm. J Am Chem Soc 125:3416–3417

    PubMed  CAS  Google Scholar 

  • Morita E, Sundquist WI (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425

    PubMed  CAS  Google Scholar 

  • Musacchio A, Saraste M, Wilmanns M (1994a) High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat Struct Biol 1:546–551

    PubMed  CAS  Google Scholar 

  • Musacchio A, Wilmanns M, Saraste M (1994b) Structure and function of the SH3 domain. Prog Biophys Mol Biol 61:283–297

    PubMed  CAS  Google Scholar 

  • Myllyharju J, Kivirikko KI (1999) Identification of a novel proline-rich peptide-binding domain in prolyl 4-hydroxylase. EMBO J 18:306–312

    PubMed  CAS  Google Scholar 

  • Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, Sicheri F, Pawson T, Tyers M (2001) Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414:514–521

    PubMed  CAS  Google Scholar 

  • Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA (1998) Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 282:2088–2092

    PubMed  CAS  Google Scholar 

  • Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA (2000) Improving SH3 domain ligand selectivity using a non-natural scaffold. Chem Biol 7:463–473

    PubMed  CAS  Google Scholar 

  • Ni CY, Murphy MP, Golde TE, Carpenter G (2001) gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294:2179–2181

    PubMed  CAS  Google Scholar 

  • Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T (1997) A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16:5433–5444

    PubMed  CAS  Google Scholar 

  • Nielsen TK, Liu S, Luhrmann R, Ficner R (2007) Structural basis for the bifunctionality of the U5 snRNP 52 K protein (CD2BP2). J Mol Biol 369:902–908

    PubMed  CAS  Google Scholar 

  • Nishi Y, Uchiyama S, Doi M, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y (2005) Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix. Biochemistry 44:6034–6042

    PubMed  CAS  Google Scholar 

  • Nishizawa K, Freund C, Li J, Wagner G, Reinherz EL (1998) Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation. Proc Natl Acad Sci USA 95:14897–14902

    PubMed  CAS  Google Scholar 

  • Okkenhaug K, Rottapel R (1998) Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction. J Biol Chem 273:21194–21202

    PubMed  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    PubMed  CAS  Google Scholar 

  • Oneyama C, Nakano H, Sharma SV (2002) UCS15A, a novel small molecule, SH3 domain-mediated protein–protein interaction blocking drug. Oncogene 21:2037–2050

    PubMed  CAS  Google Scholar 

  • Oneyama C, Agatsuma T, Kanda Y, Nakano H, Sharma SV, Nakano S, Narazaki F, Tatsuta K (2003) Synthetic inhibitors of proline-rich ligand-mediated protein–protein interaction: potent analogs of UCS15A. Chem Biol 10:443–451

    PubMed  CAS  Google Scholar 

  • Orth JD, McNiven MA (2003) Dynamin at the actin-membrane interface. Curr Opin Cell Biol 15:31–39

    PubMed  CAS  Google Scholar 

  • Paige AJ, Taylor KJ, Taylor C, Hillier SG, Farrington S, Scott D, Porteous DJ, Smyth JF, Gabra H, Watson JE (2001) WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci USA 98:11417–11422

    PubMed  CAS  Google Scholar 

  • Pornillos O, Alam SL, Davis DR, Sundquist WI (2002a) Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol 9:812–817

    PubMed  CAS  Google Scholar 

  • Pornillos O, Garrus JE, Sundquist WI (2002b) Mechanisms of enveloped RNA virus budding. Trends Cell Biol 12:569–579

    PubMed  CAS  Google Scholar 

  • Pornillos O, Higginson DS, Stray KM, Fisher RD, Garrus JE, Payne M, He GP, Wang HE, Morham SG, Sundquist WI (2003) HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J Cell Biol 162:425–434

    PubMed  CAS  Google Scholar 

  • Prehoda KE, Lee DJ, Lim WA (1999) Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97:471–480

    PubMed  CAS  Google Scholar 

  • Qin ZH, Wang Y, Sapp E, Cuiffo B, Wanker E, Hayden MR, Kegel KB, Aronin N, DiFiglia M (2004) Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24:269–281

    PubMed  CAS  Google Scholar 

  • Rothstein DM, Sayegh MH (2003) T-cell costimulatory pathways in allograft rejection and tolerance. Immunol Rev 196:85–108

    PubMed  CAS  Google Scholar 

  • Rutledge SE, Volkman HM, Schepartz A (2003) Molecular recognition of protein surfaces: high affinity ligands for the CBP KIX domain. J Am Chem Soc 125:14336–14347

    PubMed  CAS  Google Scholar 

  • Ruzza P, Siligardi G, Donella-Deana A, Calderan A, Hussain R, Rubini C, Cesaro L, Osler A, Guiotto A, Pinna LA, Borin G (2006) 4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. J Pept Sci 12:462–471

    PubMed  CAS  Google Scholar 

  • Scaife RM, Margolis RL (1997) The role of the PH domain and SH3 binding domains in dynamin function. Cell Signal 9:395–401

    PubMed  CAS  Google Scholar 

  • Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387

    PubMed  CAS  Google Scholar 

  • Sharma SV, Oneyama C, Yamashita Y, Nakano H, Sugawara K, Hamada M, Kosaka N, Tamaoki T (2001) UCS15A, a non-kinase inhibitor of Src signal transduction. Oncogene 20:2068–2079

    PubMed  CAS  Google Scholar 

  • Shiraishi-Yamaguchi Y, Furuichi T (2007) The Homer family proteins. Genome Biol 8:206

    PubMed  Google Scholar 

  • Southwick FS, Purich DL (1994) Arrest of Listeria movement in host cells by a bacterial ActA analogue: implications for actin-based motility. Proc Natl Acad Sci USA 91:5168–5172

    PubMed  CAS  Google Scholar 

  • Sreerama N, Woody RW (1999) Molecular dynamics simulations of polypeptide conformations in water: A comparison of alpha, beta, and poly(pro) II conformations. Proteins 36:400–406

    PubMed  CAS  Google Scholar 

  • Starr A, Greif J, Vexler A, Ashkenazy-Voghera M, Gladesh V, Rubin C, Kerber G, Marmor S, Lev-Ari S, Inbar M, Yarden Y, Ben Yosef R (2006) ErbB4 increases the proliferation potential of human lung cancer cells and its blockage can be used as a target for anti-cancer therapy. Int J Cancer 119:269–274

    PubMed  CAS  Google Scholar 

  • Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    PubMed  CAS  Google Scholar 

  • Sudol M (1996) Structure and function of the WW domain. Prog Biophys Mol Biol 65:113–132

    PubMed  CAS  Google Scholar 

  • Sudol M, Sliwa K, Russo T (2001) Functions of WW domains in the nucleus. FEBS Lett 490:190–195

    PubMed  CAS  Google Scholar 

  • Szumlinski KK, Lominac KD, Oleson EB, Walker JK, Mason A, Dehoff MH, Klugmann M, Cagle S, Welt K, During M, Worley PF, Middaugh LD, Kalivas PW (2005) Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 25:7054–7061

    PubMed  CAS  Google Scholar 

  • Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16:251–257

    PubMed  CAS  Google Scholar 

  • Takeya R, Ueno N, Sumimoto H (2006) Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells. Methods Enzymol, Regulators and Effectors of Small Gtpases: Rho Family 406:456–468

    CAS  Google Scholar 

  • Tanaka M, Shibata H (1985) Poly(L-proline)-binding proteins from chick embryos are a profilin and a profilactin. Eur J Biochem 151:291–297

    PubMed  CAS  Google Scholar 

  • Tiffany ML, Krimm S (1968) Circular dichroism of poly-L-proline in an unordered conformation. Biopolymers 6:1767–1770

    PubMed  CAS  Google Scholar 

  • Tremmel P, Geyer A (2002) An oligomeric ser-pro dipeptide mimetic assuming the polyproline II helix conformation. J Am Chem Soc 124:8548–8549

    PubMed  CAS  Google Scholar 

  • VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105:711–720

    PubMed  CAS  Google Scholar 

  • Varmus H, Hirai H, Morgan D, Kaplan J, Bishop JM (1989) Function, location, and regulation of the src protein-tyrosine kinase. Princess Takamatsu Symp 20:63–70

    PubMed  CAS  Google Scholar 

  • VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA (2001) Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci USA 98:7724–7729

    PubMed  CAS  Google Scholar 

  • Vetter SW, Zhang ZY (2002) Probing the phosphopeptide specificities of protein tyrosine phosphatases, SH2 and PTB domains with combinatorial library methods. Curr Protein Pept Sci 3:365–397

    PubMed  CAS  Google Scholar 

  • Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, Strina D, Patrosso MC, Ramenghi U, Sacco MG, (1995) X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet 9:414–417

    PubMed  CAS  Google Scholar 

  • Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA (2002) Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111:565–576

    PubMed  CAS  Google Scholar 

  • Wagner KU, Krempler A, Qi Y, Park K, Henry MD, Triplett AA, Riedlinger G, Rucker EB III, Hennighausen L (2003) Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol Cell Biol 23:150–162

    PubMed  CAS  Google Scholar 

  • Williams RL, Urbé S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8:355–368. Review.

    PubMed  CAS  Google Scholar 

  • Williams RS, Bernstein N, Lee MS, Rakovszky ML, Cui D, Green R, Weinfeld M, Glover JN (2005) Structural basis for phosphorylation-dependent signaling in the DNA-damage response. Biochem Cell Biol 83:721–727

    PubMed  CAS  Google Scholar 

  • Witter DJ, Famiglietti SJ, Cambier JC, Castelhano AL (1998) Design and synthesis of SH3 domain binding ligands: modifications of the consensus sequence XPpXP. Bioorg Med Chem Lett 8:3137–3142

    PubMed  CAS  Google Scholar 

  • Woodward JE, Qin L, Chavin KD, Lin J, Tono T, Ding Y, Linsley PS, Bromberg JS, Baliga P (1996) Blockade of multiple costimulatory receptors induces hyporesponsiveness: inhibition of CD2 plus CD28 pathways. Transplantation 62:1011–1018

    PubMed  CAS  Google Scholar 

  • Xu W, Doshi A, Lei M, Eck MJ, Harrison SC (1999) Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 3:629–638

    PubMed  CAS  Google Scholar 

  • Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945

    PubMed  CAS  Google Scholar 

  • Zarrinpar A, Bhattacharyya RP, Lim WA (2003a) The structure and function of proline recognition domains. Sci STKE 2003:RE8

    PubMed  Google Scholar 

  • Zarrinpar A, Park SH, Lim WA (2003b) Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426:676–680

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lindblom T, Chang A, Sudol M, Sluder AE, Golemis EA (2000) Evidence that dim1 associates with proteins involved in pre-mRNA splicing, and delineation of residues essential for dim1 interactions with hnRNP F and Npw38/PQBP-1. Gene 257:33–43

    PubMed  CAS  Google Scholar 

  • Zhu Q, Watanabe C, Liu T, Hollenbaugh D, Blaese RM, Kanner SB, Aruffo A, Ochs HD (1997) Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood 90:2680–2689

    PubMed  CAS  Google Scholar 

  • Zimmermann J, Kuhne R, Volkmer-Engert R, Jarchau T, Walter U, Oschkinat H, Ball LJ (2003) Design of N-substituted peptomer ligands for EVH1 domains. J Biol Chem 278:36810–36818

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freund, C., Schmalz, H.G., Sticht, J., Kühne, R. (2008). Proline-Rich Sequence Recognition Domains (PRD): Ligands, Function and Inhibition. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_17

Download citation

Publish with us

Policies and ethics