Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

  • 2732 Accesses

Abstract

Post-translational modification, such as protein phosphorylation, plays a critical role to reversibly amplify and modulate signaling pathways. Since kinases and phosphatases have broad substrate recognition motifs, compartmentalization and localization of signaling complexes are required to achieve specific signals. Scaffolds are proteins that associate with two or more binding partners and function to enhance the efficiency and/or specificity of cellular signaling pathways. The identification of scaffolding proteins that control the tempo and/or spatial organization of signaling pathways in cells has benefited enormously from recent technological advances that allow for the detection of protein-protein interactions, including in vivo in intact cells. This review will focus on scaffolding proteins that nucleate multi-protein complexes (and could represent novel entry points into signaling pathways that might be amenable to therapeutic manipulation) in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams BA, Tanabe T, Mikami A, Numa S, Beam KG (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346:569–572

    Article  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Fish JM (2006) Therapy for the Brugada syndrome. Handbook Exp Pharmacol 305–330

    Google Scholar 

  • Appert-Collin A, Cotecchia S, Nenniger-Tosato M, Pedrazzini T, Diviani D (2007) The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1-adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 104:10140–10145

    Article  PubMed  CAS  Google Scholar 

  • Aprigliano O, Rybin VO, Pak E, Robinson RB, Steinberg SF (1997) β1- and β2-Adrenergic receptors exhibit differing susceptibility to muscarinic accentuated antagonism. Am J Physiol 272:H2726–H2735

    PubMed  CAS  Google Scholar 

  • Baisamy L, Jurisch N, Diviani D (2005) Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem 280:15405–15412

    Article  PubMed  CAS  Google Scholar 

  • Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for β2-adrenergic regulation. Proc Natl Acad Sci USA 103:7500–7505

    Article  PubMed  CAS  Google Scholar 

  • Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK, Wong W, Hoshi N, Langeberg LK, Cooper DM, Dessauer CW, Scott JD (2006) Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cell 23: 925–931

    Article  PubMed  CAS  Google Scholar 

  • Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115:3306–3317

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, McCahill A, Huston E, Cheung YF, McSorley T, Baillie GS, Houslay MD (2003) The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins. J Biol Chem 278:49230–49238

    Article  PubMed  CAS  Google Scholar 

  • Cameron SJ, Itoh S, Baines CP, Zhang C, Ohta S, Che W, Glassman M, Lee JD, Yan C, Yang J, Abe J (2004) Activation of big MAP kinase 1 (BMK1/ERK5) inhibits cardiac injury after myocardial ischemia and reperfusion. FEBS Lett 566:255–260

    Article  PubMed  CAS  Google Scholar 

  • Cant SH, Pitcher JA (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 16:3088–3099

    Article  PubMed  CAS  Google Scholar 

  • Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M (1999) A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401:286–290

    Article  PubMed  CAS  Google Scholar 

  • Carlisle Michel JJ, Dodge KL, Wong W, Mayer NC, Langeberg LK, Scott JD (2004) PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J 381:587–592

    Article  PubMed  CAS  Google Scholar 

  • Carlson CR, Lygren B, Berge T, Hoshi N, Wong W, Tasken K, Scott JD (2006) Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor. J Biol Chem 281:21535–21545

    Article  PubMed  CAS  Google Scholar 

  • Carnegie GK, Smith FD, McConnachie G, Langeberg LK, Scott JD (2004) AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol Cell 15:889–899

    Article  PubMed  CAS  Google Scholar 

  • Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267:13376–13382

    PubMed  CAS  Google Scholar 

  • Cong M, Perry SJ, Lin FT, Fraser ID, Hu LA, Chen W, Pitcher JA, Scott JD, Lefkowitz RJ (2001) Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem 276:15192–15199

    Article  PubMed  CAS  Google Scholar 

  • Csukai M, Chen CH, De Matteis MA, Mochly-Rosen D (1997) The coatomer protein β’-COP, a selective binding protein (RACK) for protein kinase Cε. J Biol Chem 272:29200–29206

    Article  PubMed  CAS  Google Scholar 

  • Diviani D, Soderling J, Scott JD (2001) AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. J Biol Chem 276:44247–44257.

    Article  PubMed  CAS  Google Scholar 

  • Diviani D, Abuin L, Cotecchia S, Pansier L (2004) Anchoring of both PKA and 14–3-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex. EMBO J 23:2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    Article  PubMed  CAS  Google Scholar 

  • Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:574–578

    Article  PubMed  CAS  Google Scholar 

  • Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR (1997) Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J 16:35–43

    Article  PubMed  CAS  Google Scholar 

  • Fan G, Shumay E, Wang H, Malbon CC (2001) The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the β2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 276:24005–24014

    Article  PubMed  CAS  Google Scholar 

  • Fraser ID, Tavalin SJ, Lester LB, Langeberg LK, Westphal AM, Dean RA, Marrion NV, Scott JD (1998) A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. EMBO J 17:2261–2272

    Article  PubMed  CAS  Google Scholar 

  • Fraser ID, Cong M, Kim J, Rollins EN, Daaka Y, Lefkowitz RJ, Scott JD (2000) Assembly of an A kinase-anchoring protein-β2-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol 10:409–412

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci USA 97:14632–14637

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, Gehring D, Kuhn C, Lutz M, Rothermel B, Bassel-Duby R, Richardson JA, Katus HA, Hill JA, Olson EN (2004) Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10:1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Gage RM, Kim KA, Cao TT, von Zastrow M (2001) A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. J Biol Chem 276:44712–44720

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Yatani A, Dell’Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM (1997) cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19:185–196

    Article  PubMed  CAS  Google Scholar 

  • Gardner LA, Naren AP, Bahouth SW (2007) Assembly of an SAP97-AKAP79-cAMP-dependent protein kinase scaffold at the type 1 PSD-95/DLG/ZO1 motif of the human β1-adrenergic receptor generates a receptosome involved in receptor recycling and networking. J Biol Chem 282:5085–5099

    Article  PubMed  CAS  Google Scholar 

  • Gray PC, Tibbs VC, Catterall WA, Murphy BJ (1997) Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem 272:6297–6302

    Article  PubMed  CAS  Google Scholar 

  • Gray PC, Johnson BD, Westenbroek RE, Hays LG, Yates JR III, Scheuer T, Catterall WA, Murphy BJ (1998) Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron 20:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ (1998a) A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA 95:8496–8501

    Article  PubMed  CAS  Google Scholar 

  • Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (1998b) The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392:626–630

    Article  PubMed  CAS  Google Scholar 

  • Harrison BC, Kim MS, van Rooij E, Plato CF, Papst PJ, Vega RB, McAnally JA, Richardson JA, Bassel-Duby R, Olson EN, McKinsey TA (2006) Regulation of cardiac stress signaling by protein kinase D1. Mol Cell Biol 26:3875–3888

    Article  PubMed  CAS  Google Scholar 

  • Haworth RS, Cuello F, Herron TJ, Franzen G, Kentish JC, Gautel M, Avkiran M (2004) Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circ Res 95:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • He J, Bellini M, Xu J, Castleberry AM, Hall RA (2004) Interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) inhibits β1-adrenergic receptor surface expression. J Biol Chem 279:50190–50196

    Article  PubMed  CAS  Google Scholar 

  • He J, Bellini M, Inuzuka H, Xu J, Xiong Y, Yang X, Castleberry AM, Hall RA (2006) Proteomic analysis of β1-adrenergic receptor interactions with PDZ scaffold proteins. J Biol Chem 281:2820–2827

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann R, Baillie GS, MacKenzie SJ, Yarwood SJ, Houslay MD (1999) The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J 18:893–903

    Article  PubMed  CAS  Google Scholar 

  • Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA (2000) β1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of β1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem 275:38659–38666

    Article  PubMed  CAS  Google Scholar 

  • Hu LA, Chen W, Premont RT, Cong M, Lefkowitz RJ (2002) G protein-coupled receptor kinase 5 regulates β1-adrenergic receptor association with PSD-95. J Biol Chem 277:1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ (2003) GIPC interacts with the b1-adrenergic receptor and regulates β1-adrenergic receptor-mediated ERK activation. J Biol Chem 278:26295–26301

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Ahn M, Hauschka SD, Scheuer T, Catterall WA (2002) A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 277:4079–4087

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Lin TW, Westenbroek RE, Scheuer T, Catterall WA (2003) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA 100:13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Johnson BD, Scheuer T, Catterall WA (1994) Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc Natl Acad Sci USA 91:11492–11496

    Article  PubMed  CAS  Google Scholar 

  • Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299

    Article  PubMed  CAS  Google Scholar 

  • Kammerer S, Burns-Hamuro LL, Ma Y, Hamon SC, Canaves JM, Shi MM, Nelson MR, Sing CF, Cantor CR, Taylor SS, Braun A (2003) Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2: a disease susceptibility polymorphism. Proc Natl Acad Sci USA 100:4066–4071

    Article  PubMed  CAS  Google Scholar 

  • Kass RS, Moss AJ (2006) Mutation-specific pharmacology of the long QT syndrome. Handbook Exp Pharmacol 287–304

    Google Scholar 

  • Kheifets V, Bright R, Inagaki K, Schechtman D, Mochly-Rosen D (2006) Protein kinase C delta (δPKC)-annexin V interaction: a required step in δPKC translocation and function. J Biol Chem 281:23218–23226

    Article  PubMed  CAS  Google Scholar 

  • Kucera JP, Rohr S, Rudy Y (2002) Localization of sodium channels in intercalated disks modulates cardiac conduction. Circ Res 91:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa J, Chen L, Kass RS (2003) Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci USA 100:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Wang H, Malbon CC (2000) Gravin-mediated formation of signaling complexes in β2-adrenergic receptor desensitization and resensitization. J Biol Chem 275:19025–19034

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Zhou J, Zelenka PS, Takemoto DJ (2003) Protein kinase Cγ regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest Ophthalmol Vis Sci 44: 5259–5268

    Article  PubMed  Google Scholar 

  • Liu Y, Cseresnyes Z, Randall WR, Schneider MF (2001) Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 155:27–39

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    Article  PubMed  CAS  Google Scholar 

  • Mackay K, Mochly-Rosen D (2001) Localization, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol 33:1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153:699–708

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science (New York, NY) 295:496–499

    Article  PubMed  CAS  Google Scholar 

  • McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ (2002) The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62:1261–1273

    Article  PubMed  CAS  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    Article  PubMed  CAS  Google Scholar 

  • Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ (2000) β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of b-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J Biol Chem 275:11312–11319

    Article  PubMed  CAS  Google Scholar 

  • Moss AJ, Kass RS (2005) Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest 115:2018–2024

    Article  PubMed  CAS  Google Scholar 

  • Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC-ζ is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14:1961–1969

    PubMed  CAS  Google Scholar 

  • Oka N, Yamamoto M, Schwencke C, Kawabe JI, Ebina T, Ohno S, Couet J, Lisanti MP, Ishikawa Y (1997) Caveolin interaction with protein kinase C: isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem 272:33416–33421

    Article  PubMed  CAS  Google Scholar 

  • Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55:261–275

    Article  PubMed  CAS  Google Scholar 

  • Pare GC, Easlick JL, Mislow JM, McNally EM, Kapiloff MS (2005) Nesprin-1α contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res 303:388–399

    Article  PubMed  CAS  Google Scholar 

  • Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD, Lefkowitz RJ (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298:834–836

    Article  PubMed  CAS  Google Scholar 

  • Pitt GS, Zuhlke RD, Hudmon A, Schulman H, Reuter H, Tsien RW (2001) Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 276:30794–30802

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Mayhew MW, Cooper JB, Terrian DM (1996) Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol 132:77–90

    Article  PubMed  CAS  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, Moncalvo C, Tulipani C, Veia A, Bottelli G, Nastoli J (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Pyle WG, La Rotta G, de Tombe PP, Sumandea MP, Solaro RJ (2006) Control of cardiac myofilament activation and PKC-bII signaling through the actin capping protein, CapZ. J Mol Cell Cardiol 41:537–543

    Article  PubMed  CAS  Google Scholar 

  • Pyle WG, Hart MC, Cooper JA, Sumandea MP, de Tombe PP, Solaro RJ (2002) Actin capping protein: an essential element in protein kinase signaling to the myofilaments. Circ Res 90:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Reiken S, Gaburjakova M, Gaburjakova J, He Kl KL, Prieto A, Becker E, Yi Gh GH, Wang J, Burkhoff D, Marks AR (2001) Beta-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 104:2843–2848

    Article  PubMed  CAS  Google Scholar 

  • Robia SL, Kang M, Walker JW (2005) Novel determinant of PKC-R anchoring at cardiac Z-lines. Am J Physiol Heart Circ Physiol 289:H1941–H1950

    Article  PubMed  CAS  Google Scholar 

  • Robles-Flores M, Rendon-Huerta E, Gonzalez-Aguilar H, Mendoza-Hernandez G, Islas S, Mendoza V, Ponce-Castaneda MV, Gonzalez-Mariscal L, Lopez-Casillas F (2002) p32 (C1qBP) is a general protein kinase C (PKC)-binding protein. J Biol Chem 277:5247–5255

    Article  PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X, Steinberg SF (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae. Circ Res 84:980–988

    PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae: A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447–41457

    Article  PubMed  CAS  Google Scholar 

  • Sacchetto R, Damiani E, Margreth A (2001) Clues to calcineurin function in mammalian fast-twitch muscle. J Muscle Res Cell Motil 22:545–559

    Article  PubMed  CAS  Google Scholar 

  • Santonastasi M, Wehrens XH (2007) Ryanodine receptors as pharmacological targets for heart disease. Acta Pharmacologica Sinica 28:937–944

    Article  PubMed  CAS  Google Scholar 

  • Schechtman D, Mochly-Rosen D (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20:6339–6347

    Article  PubMed  CAS  Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova OG, Hurt CM, Xiang Y, Dell’Acqua ML, Zhang Q, Tsien RW, Kobilka BK (2007) Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. J Cell Biol 176:521–533

    Article  PubMed  CAS  Google Scholar 

  • Shih M, Lin F, Scott JD, Wang HY, Malbon CC (1999) Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem 274:1588–1595

    Article  PubMed  CAS  Google Scholar 

  • Stanasila L, Abuin L, Diviani D, Cotecchia S (2006) Ezrin directly interacts with the α1b-adrenergic receptor and plays a role in receptor recycling. J Biol Chem 281:4354–4363

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentalization of G-protein-mediated signal transduction components in the heart. Ann Rev Pharm Tox 41:751–773

    Article  CAS  Google Scholar 

  • Sterpetti P, Hack AA, Bashar MP, Park B, Cheng SD, Knoll JH, Urano T, Feig LA, Toksoz D (1999) Activation of the Lbc Rho exchange factor proto-oncogene by truncation of an extended C terminus that regulates transformation and targeting. Mol Cell Biol 19:1334–1345

    PubMed  CAS  Google Scholar 

  • Suzaki Y, Yoshizumi M, Kagami S, Koyama AH, Taketani Y, Houchi H, Tsuchiya K, Takeda E, Tamaki T (2002) Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. J Biol Chem 277:9614–9621

    Article  PubMed  CAS  Google Scholar 

  • Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, Kawakatsu H, Lawrence EG, Hoit BD, Berk BC, Walsh RA (2001) Src and multiple map kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol 33:1637–1648

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Wang HY, Malbon CC (2003) Protein kinase A regulates AKAP250 (gravin) scaffold binding to the β2-adrenergic receptor. EMBO J 22:6419–6429

    Article  PubMed  CAS  Google Scholar 

  • Tingley WG, Pawlikowska L, Zaroff JG, Kim T, Nguyen T, Young SG, Vranizan K, Kwok PY, Whooley MA, Conklin BR (2007) Gene-trapped mouse embryonic stem cell-derived cardiac myocytes and human genetics implicate AKAP10 in heart rhythm regulation. Proc Natl Acad Sci USA 104:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Dybkova N, Rasenack EC, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138

    Article  PubMed  CAS  Google Scholar 

  • Wallace DA, Johnston LA, Huston E, MacMaster D, Houslay TM, Cheung YF, Campbell L, Millen JE, Smith RA, Gall I, Knowles RG, Sullivan M, Houslay MD (2005) Identification and characterization of PDE4A11, a novel, widely expressed long isoform encoded by the human PDE4A cAMP phosphodiesterase gene. Mol Pharmacol 67:1920–1934

    Article  PubMed  CAS  Google Scholar 

  • Wehrens XH (2006) Structural determinants of potassium channel blockade and drug-induced arrhythmias. Handbook Exp Pharmacol 123–157

    Google Scholar 

  • Wehrens XHT, Marks AR (2005) Ryanodine receptors: structure, function, and dysfunction in clinical disease. Springer, New York

    Google Scholar 

  • Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science (New York, NY) 304:292–296

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM (2006) An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J 25:2051–2061

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q, Lasky LA (2000) Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 275:21477–21485

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Devic E, Kobilka B (2002) The PDZ binding motif of the Beta 1 adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. J Biol Chem 277:33783–33790

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Naro F, Zoudilova M, Jin SL, Conti M, Kobilka B (2005) Phosphodiesterase 4D is required for β2-adrenoceptor subtype-specific signaling in cardiac myocytes. Proc Natl Acad Sci USA 102:909–914

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA (2001) β1-Adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD- 95. J Biol Chem 276:41310–41317

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T, Kohno M, Matsuzaki M (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107:477–484

    Article  PubMed  CAS  Google Scholar 

  • Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB (1999) The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem 274:14909–14917

    Article  PubMed  CAS  Google Scholar 

  • Young P, Ehler E, Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154:123–136

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Ruiz-Loz1no P, Martone ME, Chen J (1999) Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to a-actinin-2 and protein kinase C. J Biol Chem 274:19807–19813

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Shin HG, Yi J, Shen W, Williams CP, Murray KT (2002) Phosphorylation and putative ER retention signals are required for protein kinase A-mediated potentiation of cardiac sodium current. Circ Res 91:540–546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chudasama, N.L., Marx, S.O., Steinberg, S.F. (2008). Scaffolding Proteins in Cardiac Myocytes. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_13

Download citation

Publish with us

Policies and ethics