Advertisement

Design, Control, and Evaluation of a Hyper-redundant Haptic Device

  • Marc Ueberle
  • Nico Mock
  • Martin Buss
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 31)

Summary

The design and control concept of a serial hyper-redundant haptic interface with 10 actuated degrees-of-freedom (DOF) is discussed. The main motivation for the redundant DOF is the avoidance of interior singularities to increase the workspace while reducing the overall device size. Furthermore, the wrist singularities are eliminated resulting in an orientation workspace of 360° around each axis. Hardware experiments evaluating the closed loop performance and the capability of the inverse kinematics solution to avoid singular configurations confirm the applicability of the proposed design and control concept for human haptic interaction.

Keywords

Inverse Kinematic Revolute Joint Haptic Device Prismatic Joint Haptic Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Esen, K. Yano, and M. Buss. A virtual environment medical training system for bone drilling with 3 DOF force feedback. In Proc. IEEE/RSJ Int. Conf. on Intellig. Rob. and Syst., pages 3631–3636, 2004.Google Scholar
  2. 2.
    M. Buss and G. Schmidt. Control Problems in Multi-Modal Telepresence Systems. In P.M. Frank, editor, Advances in Control: Highlights of the 5th European Control Conf. ECC’99 in Karlsruhe, Germany, pages 65–101. Springer, 1999.Google Scholar
  3. 3.
    J.D. Brederson, M. Ikits, C.R. Johnson, and C.D. Hansen. The visual haptic workbench. In Proc. 5th PHANToM Users Group Workshop, 2000.Google Scholar
  4. 4.
    C. Richard, A.M. Okamura, and M.R. Cutkosky. Getting a feel for dynamics: using haptic interface kits for teaching dynamics and controls. In ASME IMECE 6th Annu. Symp. on Haptic Interfaces, Dallas, Texas, 1997.Google Scholar
  5. 5.
    Y. Nakamura. Advanced Robotics: Redundancy and Optimization. Addison-Wesley, 1991.Google Scholar
  6. 6.
    G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pascucci, and M. Schedl. DLR’s torque-controlled light weight robot iii-are we reaching the technological limits now? In Proc. IEEE Int. Conf. Rob. Automat., pages 1710–1716, 2002.Google Scholar
  7. 7.
    M. Ueberle and M. Buss. Design, control, and evaluation of a new 6 DOF haptic device. In Proc. IEEE/RSJ Int. Conf. on Intellig. Rob. and Syst., pages 2949–2954, 2002.Google Scholar
  8. 8.
    H.Z. Tan, M.A. Srinivasan, B. Eberman, and B. Cheng. Human factors for the design of force-reflecting haptic interfaces. In Proc. ASME Winter Annu. Meeting: Dyn. Syst. and Contr., DSC-55(1), pages 353–359, 1994.Google Scholar
  9. 9.
    J. Martin, J. Savall. Mechanisms for haptic torque feedback. In Proc. First Joint Eurohaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 611–614, 2005.Google Scholar
  10. 10.
    S.D. Laycock and A.M. Day. Recent developments and applications of haptic devices. Computer Graphics Forum, 22(2):117–132, 2003.CrossRefGoogle Scholar
  11. 11.
    C. Youngblut, R.E. Johnston, S.H. Nash, R.A. Wienclaw, and C.A. Will. Review of virtual environment interface technology. IDA Paper P-3186, Institute for Defense Analysis (IDA), 1996.Google Scholar
  12. 12.
    G. Burdea. Force and Touch Feedback for Virtual Reality. John Wiley & Sons, 1996.Google Scholar
  13. 13.
    U. Kühnapfel, H.K. Çakmak, B. Chantier, H. Maaß G. Strauss, C. Trantakis, E. Novatius, J. Meixensberger, K. Lehmann, H.. Buhr, M. Lawo, and G. Bretthauer. HapticIO: haptic interface-systems for virtual-reality training in minimallyinvasive surgery. In Proc. Int. Statustagung Virtuelle und Erweiterte Realität, 2004.Google Scholar
  14. 14.
    Y. Tsumaki, H. Naruse, D.N. Nenchev, and M. Uchiyama. Design of a compact 6-dof haptic interface. In Proc. IEEE Int. Conf. on Rob. Automat., pages 2580–2585, 1998.Google Scholar
  15. 15.
    V. Hayward, P. Gregorio, S. Greenish, M. Doyon, L. Lessard, J. McDougall, I. Sinclair, S. Boelen, X. Chen, J.-P. Demers, and J. Poulin. Freedom-7: A high fidelity seven axis haptic device with application to surgical training. In A. Casals and A.T. de Almeida, editors, Experimental Robotics V, Lecture Notes in Control and Information Sciences 232, Springer-Verlag, pages 445–456, 1998.Google Scholar
  16. 16.
    H. Iwata. Pen-based haptic virtual environment. In Proc. IEEE Virtual Reality Annual Int. Symp., pages 287–292, 1993.Google Scholar
  17. 17.
    T. Massie and J. Salisbury. The PHANTOM haptic interface: A device for probing virtual objects. In Proc. ASME Winter Annu. Meeting: Dyn. Syst. and Contr., volume 55, pages 295–301, 1994.Google Scholar
  18. 18.
    S. Grange, F. Conti, P. Rouiller, P. Helmer, and C. Baur. Overview of the Delta Haptic Device. In Eurohaptics, 2001.Google Scholar
  19. 19.
    C.L. Clover, G.R. Luecke, J.J. Troy, and W.A. McNeely. Dynamic simulation of virtual mechanisms with haptic feedback using industrial robotics equipment. In Proc. IEEE Int. Conf. on Rob. Automat., pages 724–730, 1997.Google Scholar
  20. 20.
    J. Hoogen, R. Riener, and G. Schmidt. Control aspects of a robotic haptic display for kinesthetic knee joint simulation. In IFAC J. on Control Eng. Practice, volume 10, pages 1301–1308, 2002.CrossRefGoogle Scholar
  21. 21.
    R. Adams, M. Moreyra, and B. Hannaford. Excalibur-a three axis force display. In Proc. ASME Int. Mech. Eng. Congr. Exhib., 1999.Google Scholar
  22. 22.
    R.Q. Van der Linde, P. Lammertse, E. Frederiksen, and B. Ruiter. The Haptic-Master, a new high-performance haptic interface. In Eurohaptics’02, pages 1–5, 2002.Google Scholar
  23. 23.
    A. Frisoli, F. Rocchi, S. Marcheschi, A. Dettori, F. Salsedo, and M. Bergamasco. A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In Proc. First Joint Eurohaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 195–201, 2005.Google Scholar
  24. 24.
    S. Jacobsen, F. Smith, D. Backman, and E. Iversen. High performance, high dexterity, force reflective teleoperator II. In ANS Topical Meeting on Robotics and Remote Systems, 1991.Google Scholar
  25. 25.
    N. Nitzsche and G. Schmidt. A mobile haptic interface mastering a mobile teleoperator. In Proc. IEEE/RJS Int. Conf. on Intellig. Rob. and Syst., pages 391–3917, 2004.Google Scholar
  26. 26.
    N. Nitzsche, U.D. Hanebeck, and G. Schmidt. Motion compression for telepresent walking in large target environments. Presence, 13(1):44–60, 2004.CrossRefGoogle Scholar
  27. 27.
    C. Wampler. Wrist singularities: theory and practice. In O. Khatib, J. Craig, and T. Lozano-Pérez, editors, The Robotics Review 2, pages 173–189. MIT Press, 1992.Google Scholar
  28. 28.
    R. Clavel. Conception d’un robot parallèle rapid à 4 degrés de liberté. PhD thesis, École Polytechnique Fédérale de Lausanne, 1991.Google Scholar
  29. 29.
    A. Sharon, N. Hogan, and D.E. Hardt. High bandwidth force regulation and inertia reduction using a macro/micro manipulator system. In Proc. IEEE Int. Conf. on Rob. Automat., pages 126–132, 1988.Google Scholar
  30. 30.
    J.M. Hollerbach. Optimum kinematic design for a seven degree of freedom manipulator. In 2nd Int. Symp. of Robotics Research, pages 215–222, 1984.Google Scholar
  31. 31.
    K. Kreutz-Delgado, M. Long, and H. Seraji. Kinematic analysis of 7 dof anthropomorphic arms. In Proc. IEEE Int. Conf. on Rob. Automat., pages 824–830, 1990.Google Scholar
  32. 32.
    R.L. Williams II. Local performance optimization for a class of redundant eightdegree-of-freedom manipulators. In Proc. IEEE Int. Conf. on Rob. Automat., pages 992–997, 1994.Google Scholar
  33. 33.
    F.B.M. Duarte, J.A.T Machado, and L. Horváth. A trajectory planning algorithm for redundant manipulators. In Proc. IEEE Int. Symp. Ind. Electr., pages 1002–1007, 1999.Google Scholar
  34. 34.
    H. Esen, K. Yano, and M. Buss. Training strategies allowing haptic interaction in multi-user virtual environments. In Proc. IEEE Int. Conf. on Robotics & Automation, 2007. in review.Google Scholar
  35. 35.
    H. Esen, K. Yano, and M. Buss. Interaction with virtual deformable objects for surgery simulation using a hyper redundant haptic display. In Eurohaptics’06, pages 519–522, 2006.Google Scholar
  36. 36.
    M. Fritschi, M.O. Ernst, and M. Buss. Integration of kinesthetic and tactile display-modular design concept. In Eurohaptics’06, pages 607–612, 2006.Google Scholar
  37. 37.
    M.P. Vitello, M.O. Ernst, and M. Fritschi. An instance of tactile suppression: Active exploration impairs tactile sensitivity for the direction of lateral movement. In Eurohaptics’06, pages 351–356, 2006.Google Scholar
  38. 38.
    M. Ueberle, N. Mock, and M. Buss. VisHaRD10, a novel hyper-redundant haptic interface. In Proc. Int. Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 58–65, 2004.Google Scholar
  39. 39.
    P.K. Khosla and T. Kanade. Treal-time implementation and evaluation of the computed-torque scheme. IEEE Trans. Rob. Automat., 5(2):245–253, 1989.CrossRefGoogle Scholar
  40. 40.
    A. Liégeois. Automatic supervisory control of the configuration and behaviour of multibody mechanisms. IEEE Tans. on Syst. Man, and Cybern., 7(12):868–871, 1977.zbMATHCrossRefGoogle Scholar
  41. 41.
    M. Ueberle and M. Buss. Control of kinesthetic haptic interfaces. In Proc. IEEE/RSJ Int. Conf. on Intellig. Rob. and Syst. Workshop on Touch and Haptics, 2004.Google Scholar
  42. 42.
    Tsuneo Yoshikawa. Manipulability of robotic mechanism. The Int. J. of Robotics Research, 4(5):3–9, Summer 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marc Ueberle
    • 1
  • Nico Mock
    • 2
  • Martin Buss
    • 1
  1. 1.Institute of Automatic Control Engineering (LSR)Technische Universität MünchenMunichGermany
  2. 2.Institut für Elektrische EnergietechnikTechnische Universität BerlinBerlinGermany

Personalised recommendations