Advertisement

Advanced Telerobotics: Dual-Handed and Mobile Remote Manipulation

  • Martin Buss
  • Kwang-Kyu Lee
  • Norbert Nitzsche
  • Angelika Peer
  • Bartlomiej Stanczyk
  • Ulrich Unterhinninghofen
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 31)

Summary

This work presents an advanced dual-handed, mobile telerobotic system developed at the High-Fidelity Telepresence and Teleaction Research Centre, Munich, Germany. To the authors’ best knowledge, it is the first attempt to integrate mobile and multi-robot strategies in one physical and logical framework. In order to exploit human manipulation capabilities, a high fidelity telemanipulation system was developed. It consists of two redundant human-scaled anthropomorphic telemanipulator arms controlled by two redundant haptic interfaces providing a large, convex workspace and force feedback in a wide range of human perception. To provide a multi modal immersion, the haptic modality is augmented by 3D visual and audio channels. The main research issues are the control of devices with dissimilar kinematics, redundancy resolution methods, and six DOF compliance control. To extend the accessible workspace in remote environments, mobile robots are used as transporting platform extending the functionality of both the input devices and the telerobot. Mechatronic design topics and experimental results of six degree of freedom telemanipulation tasks and mobile telemanipulation are presented. The motion compression concept is exploited to cover large remote environments on a relatively small local area. Finally, architectures for collaborative telemanipulation are classified and corresponding interaction schemes are discussed.

Keywords

Mobile Platform Head Mount Display User Environment Haptic Interface Target Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Baier, F. Freyberger, and G. Schmidt. A high fidelity interactive stereo vision. In Proceedings of the 2001 Workshop on Advances in Interactive Multimodal Telepresence Systems, pages 33–42, Munich, Germany, 2001.Google Scholar
  2. 2.
    Immersion Corp. Two-handed cyberforce system. http://www.immersion.com/3d/products/haptic_workstation.php, 2002.Google Scholar
  3. 3.
    S. Walairacht, M. Ishii, Y. Koike, and M. Sato. Two-handed multi-finger string-based haptic interface device. In IEICIE Trans. on Information and Systems, (84):365–373, 2001.Google Scholar
  4. 4.
    K.J. Waldron and K. Tollon. Mechanical characterization of the immersion corp. haptic, bimanual, surgical simulator interface. In B. Siciliano and P. Dario, editors, Proc. of the 8th Int. Symposium on Experimental Robotics (ISER’02), pages 106–112. Springer, 2003.Google Scholar
  5. 5.
    M.C. Cavusoglu, F. Tendick, W. Winthrop, and S.S. Sastry. A laparoscopic telesurgical workstation. IEEE Trans. on Robotics and Automation, 15(4):728–739, 1999.CrossRefGoogle Scholar
  6. 6.
    S. Hayati, T. Lee, K. Tso, and P. Backes. A testbed for a unified teleoperated-autonomous dual-arm robotic system. In Proc. of the IEEE Trans. on Robotics and Automation, pages 1090–1095, 1990.Google Scholar
  7. 7.
    W.K. Yoon, Y. Tsumaki, and M. Uchiyama. An experimental system for dual-arm robot teleoperation in space with concepts of virtual grip and ball. In Proc. of the Int. Conf. on Advanced Robotics, pages 225–230, 1999.Google Scholar
  8. 8.
    A. Kron and G. Schmidt. Bimanual haptic telepresence system employed to demining operations. In Proc. of the EuroHaptics, pages 490–493, 2004.Google Scholar
  9. 9.
    A. Kron, G. Schmidt, B. Petzold, M. Zäh, E. Steinbach, and P. Hinterseer. Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA, New Orleans, LA, 2004.Google Scholar
  10. 10.
    S. Chang, J. Kim, J.H. Borm, and C. Lee. Kist teleoperation system for humanoid robot. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages. 1198–1203, 1999.Google Scholar
  11. 11.
    J.M. Hollerbach. Optimum kinematic design for a seven degree of freedom manipulator. Int. J. Robotics Research, pages 341–349, 1984.Google Scholar
  12. 12.
    H. Seraji. Configuration control of redundant manipulators: Theory and implementation. IEEE Transactions on Robotics and Automation, 5(4):472–490, 1989.CrossRefGoogle Scholar
  13. 13.
    F. Caccavale, B. Siciliano. Quaternion-based kinematic control of redundant spacecraft/ manipulator systems. In IEEE Int. Conf. on Robotics and Automation, pages. 435–440, 2001.Google Scholar
  14. 14.
    Y. Nakamura and H. Hanafusa. Optimal redundancy control of robot manipulators. Inter. J. of Robotics Research, 6(1):34–42, 1987.Google Scholar
  15. 15.
    T. Yoshikawa. Analysis and control of robot manipulators with redundancy. In First Inter. Symp. on Robotics Research, 6(2):3–15, 1987.Google Scholar
  16. 16.
    T.F. Chan, R.V. Dubey. A weighted least norm solution based scheme for avoiding joint limits for redundant manipulators. In IEEE Int. Conf. on Robotics and Automation, 3:395–402, 1993.Google Scholar
  17. 17.
    H. Zghal, R.V. Dubey, J.A. Euler. Efficient gradient projection optimization for manipulators with multiple degrees of redundancy. In IEEE Inter. Conf. on Robotics and Automation, pages 1006–1011, 1990.Google Scholar
  18. 18.
    K. Cleary and D. Tesar. Incorporating multiple criteria in the operation of redundant manipulators. In IEEE Inter. Conf. on Robotics and Automation, 1:618–624, 1990.CrossRefGoogle Scholar
  19. 19.
    J.A. Pemanes and S. Zeghloul. Optimal placement of robotic manipulators using multiple kinematics criteria. In IEEE Inter. Conf. on Robotics and Automation, pages 933–938, 1991.Google Scholar
  20. 20.
    A. Kron. Beiträge zur bimanuellen und mehrfingrigen haptischen Informationsvermittlung in Telepräsenzsystemen. PhD thesis, Technische Universität München, 2004.Google Scholar
  21. 21.
    A. Kron and G. Schmidt. Stability and performance analysis of kinesthetic control architectures for bimanual telepresence systems. Journal of Intelligent Robotic Systems, 46(1):1–26, 2006.CrossRefGoogle Scholar
  22. 22.
    S. Hirche, B. Stanczyk, and M. Buss. Transparent Exploration of Remote Environments by Internet Telepresence. In Proceedings of Int. Workshop on High-Fidelity Telepresence and Teleaction jointly with the conference HUMANOIDS, Munich, Germany, 2003.Google Scholar
  23. 23.
    S. Hirche. Haptic Telepresence in Packet Switched Communication Networks. PhD thesis, Technische Universität München, 2005.Google Scholar
  24. 24.
    M. Ueberle, N. Mock, A. Peer, C. Michas, and M. Buss. Design and Control Concepts of a Hyper Redundant Haptic Interface for Interaction with Virtual Environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Workshop on Touch and Haptics, Sendai, Japan, 2004.Google Scholar
  25. 25.
    M. Ueberle. Design, Control, and Evaluation of a Family of Kinesthetic Haptic Interfaces. PhD thesis, Technische Universität München, 2006.Google Scholar
  26. 26.
    N.H. Bakker, P.J. Werkhoven, and P.O. Passenier. The effect of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence: Teleoperators and Virtual Environments, 8:36–53, 1999.CrossRefGoogle Scholar
  27. 27.
    N. Nitzsche and G. Schmidt. A mobile haptic interface mastering a mobile teleoperator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3912–3917, Sendai, Japan, 2004.Google Scholar
  28. 28.
    W. Becker, G. Nasios, S. Raab, and R. Jürgens. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Exp. Brain Res., 144(4):458–474, 2002.CrossRefGoogle Scholar
  29. 29.
    N. Nitzsche, U.D. Hanebeck, and G. Schmidt. Motion compression for telepresent walking in large target environments. Presence: Teleoperators and Virtual Environments, 13:44–60, 2004.CrossRefGoogle Scholar
  30. 30.
    O. von Stryk. Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. 1995.Google Scholar
  31. 31.
    N. Nitzsche. Weiträumige Telepräsenz: Unbeschränkte Fortbewegung und haptische Interaktion. PhD thesis, Technische Universität München, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Buss
    • 1
  • Kwang-Kyu Lee
    • 1
  • Norbert Nitzsche
    • 1
  • Angelika Peer
    • 1
  • Bartlomiej Stanczyk
    • 1
  • Ulrich Unterhinninghofen
    • 1
  1. 1.Institute of Automatic Control Engineering (LSR)Technische Universität MünchenMunichGermany

Personalised recommendations