TCR-Mediated Recognition of Glycolipid CD1 Complexes

  • B. A. Sullivan
  • M. Kronenberg
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)


Major Histocompatibility Complex Class iNKT Cell Glycolipid Antigen Tetramer Binding CD1d Tetramer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, Postle AD, De Libero G, Porcelli SA, Spinozzi F (2005) Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 202:295–308PubMedCrossRefGoogle Scholar
  2. Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D (2002) Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583–594PubMedCrossRefGoogle Scholar
  3. Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162:161–167PubMedGoogle Scholar
  4. Bendelac A, Killeen N, Littman DR, Schwartz RH (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263:1774–1778PubMedCrossRefGoogle Scholar
  5. Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562PubMedCrossRefGoogle Scholar
  6. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903PubMedCrossRefGoogle Scholar
  7. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NK T cell lineage. Science 296:553–555PubMedCrossRefGoogle Scholar
  8. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedCrossRefGoogle Scholar
  9. Brigl M, van den Elzen P, Chen X, Meyers JH, Wu D, Wong CH, Reddington F, Illarianov PA, Besra GS, Brenner MB, Gumperz JE (2006) Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J Immunol 176:3625–3634PubMedGoogle Scholar
  10. Brossay L, Kronenberg M (1999) Highly conserved antigen-presenting function of CD1d molecules. Immunogenetics 50:146–151PubMedCrossRefGoogle Scholar
  11. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521–1528PubMedCrossRefGoogle Scholar
  12. Burdin N, Brossay L, Degano M, Iijima H, Gui M, Wilson IA, Kronenberg M (2000) Structural requirements for antigen presentation by mouse CD1. Proc Natl Acad Sci U S A 97:10156–10561PubMedCrossRefGoogle Scholar
  13. Cantu C 3rd, Benlagha K, Savage PB, Bendelac A, Teyton L (2003) The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity, low specificity for CD1d, high affinity for alpha beta TCRs. J Immunol 170:4673–4682PubMedGoogle Scholar
  14. Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182:993–1004PubMedCrossRefGoogle Scholar
  15. Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189:103–110PubMedCrossRefGoogle Scholar
  16. Chiu YH, Park SH, Benlagha K, Forestier C, Jayawardena-Wolf J, Savage PB, Teyton L, Bendelac A (2002) Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat Immunol 3:55–60PubMedCrossRefGoogle Scholar
  17. Chun T, Page MJ, Gapin L, Matsuda JL, Xu H, Nguyen H, Kang HS, Stanic AK, Joyce S, Koltun WA, Chorney MJ, Kronenberg M, Wang CR (2003) CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 197:907–918PubMedCrossRefGoogle Scholar
  18. Crawford F, Kozono H, White J, Marrack P, Kappler J (1998) Detection of antigen-specific T cells with multivalent soluble class IIMHC covalent peptide complexes. Immunity 8:675–682PubMedCrossRefGoogle Scholar
  19. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J, Arden B, Chien Y (1998) Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 16:523–544PubMedCrossRefGoogle Scholar
  20. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J Exp Med 180:1171–1176PubMedCrossRefGoogle Scholar
  21. Elewaut D, Lawton AP, Nagarajan NA, Maverakis E, Khurana A, Honing S, Benedict CA, Sercarz E, Bakke O, Kronenberg M, Prigozy TI (2003) The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. J Exp Med 198:1133–1146PubMedCrossRefGoogle Scholar
  22. Exley M, Garcia J, Balk SP, Porcelli S (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4CD8 T cells. J Exp Med 186:109–120PubMedCrossRefGoogle Scholar
  23. Exley MA, Tahir SM, Cheng O, Shaulov A, Joyce R, Avigan D, Sackstein R, Balk SP (2001) Amajor fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol 167:5531–5534PubMedGoogle Scholar
  24. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101:10685–10690PubMedCrossRefGoogle Scholar
  25. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, Ritter G, Schmidt RR, Jones EY, Cerundolo V (2002) Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 3:721–726PubMedCrossRefGoogle Scholar
  26. Gadola SD, Koch M, Marles-Wright J, Lissin NM, Shepherd D, Matulis G, Harlos K, Villiger PM, Stuart DI, Jakobsen BK, Cerundolo V, Jones EY (2006) Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors. J Exp Med 203:699–710PubMedCrossRefGoogle Scholar
  27. Gangadharan D, Cheroutre H (2004) The CD8 isoform CD8alphaalpha is not a functional homologue of the TCR co-receptor CD8alphabeta. Curr Opin Immunol 16:264–270PubMedCrossRefGoogle Scholar
  28. Garcia KC, Scott CA, Brunmark A, Carbone FR, Peterson PA, Wilson IA, Teyton L (1996) CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 384:577–81PubMedCrossRefGoogle Scholar
  29. Germain RN (2001) The art of the probable: system control in the adaptive immune system. Science 293:240–245PubMedCrossRefGoogle Scholar
  30. Giabbai B, Sidobre S, Crispin MD, Sanchez-Ruiz Y, Bachi A, Kronenberg M, Wilson IA, Degano M (2005) Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J Immunol 175:977–984PubMedGoogle Scholar
  31. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Bohmer G, Prandi J, Mori L, Puzo G, De Libero G (2004) Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199:649–659PubMedCrossRefGoogle Scholar
  32. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237PubMedCrossRefGoogle Scholar
  33. Goff RD, Gao Y, Mattner J, Zhou D, Yin N, Cantu C 3rd, Teyton L, Bendelac A, Savage PB (2004) Effects of lipid chain lengths in alpha-galactosylceramides on cytokine release by natural killer T cells. J Am Chem Soc 126:13602–13603PubMedCrossRefGoogle Scholar
  34. Grant EP, Degano M, Rosat JP, Stenger S, Modlin RL, Wilson IA, Porcelli SA, Brenner MB (1999) Molecular recognition of lipid antigens by T cell receptors. J Exp Med 189:195–205PubMedCrossRefGoogle Scholar
  35. Gui M, Li J, Wen LJ, Hardy RR, Hayakawa K (2001) TCR beta chain influences but does not solely control autoreactivity of V alpha 14J281T cells. J Immunol 167:6239–6246PubMedGoogle Scholar
  36. Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA, Cardell S, Brenner MB, Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedCrossRefGoogle Scholar
  37. Hamad AR, O’Herrin SM, Lebowitz MS, Srikrishnan A, Bieler J, Schneck J, Pardoll D (1998) Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J Exp Med 188:1633–1640PubMedCrossRefGoogle Scholar
  38. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957PubMedCrossRefGoogle Scholar
  39. Kamada N, Iijima H, Kimura K, Harada M, Shimizu E, Motohashi S, Kawano T, Shinkai H, Nakayama T, Sakai T, Brossay L, Kronenberg M, Taniguchi M (2001) Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to V(alpha)14 NKT cells. Int Immunol 13:853–861PubMedCrossRefGoogle Scholar
  40. Kawachi I, Maldonado J, Strader C, Gilfillan S (2006) MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J Immunol 176:1618–1627PubMedGoogle Scholar
  41. Kersh GJ, Kersh EN, Fremont DH, Allen PM (1998) High-and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9:817–826PubMedCrossRefGoogle Scholar
  42. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525PubMedCrossRefGoogle Scholar
  43. Kjer-Nielsen L, Borg NA, Pellicci DG, Beddoe T, Kostenko L, Clements CS, Williamson NA, Smyth MJ, Besra GS, Reid HH, Bharadwaj M, Godfrey DI, Rossjohn J, McCluskey J (2006) A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J Exp Med 203:661–673PubMedCrossRefGoogle Scholar
  44. Koch M, Stronge VS, Shepherd D, Gadola SD, Mathew B, Ritter G, Fersht AR, Besra GS, Schmidt RR, Jones EY, Cerundolo V (2005) The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat Immunol 6:819–826PubMedCrossRefGoogle Scholar
  45. Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557–568PubMedGoogle Scholar
  46. Kunisaki Y, Tanaka Y, Sanui T, Inayoshi A, Noda M, Nakayama T, Harada M, Taniguchi M, Sasazuki T, Fukui Y (2006) DOCK2 is required in T cell precursors for development of Valpha14 NK T cells. J Immunol 176:4640–4645PubMedGoogle Scholar
  47. Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J Exp Med 180:1097–1106PubMedCrossRefGoogle Scholar
  48. Leishman AJ, Gapin L, Capone M, Palmer E, MacDonald HR, Kronenberg M, Cheroutre H (2002) Precursors of functional MHC class I-or class II-restricted CD8alphaalpha(+) T cells are positively selected in the thymus by agonist self-peptides. Immunity 16:355–364PubMedCrossRefGoogle Scholar
  49. Liu Y, Goff RD, Zhou D, Mattner J, Sullivan BA, Khurana A, Cantu C 3rd, Ravkov EV, Ibegbu CC, Altman JD, Teyton L, Bendelac A, Savage PB (2006) A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J Immunol Methods 312:34–39PubMedCrossRefGoogle Scholar
  50. Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995) Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol 7:1157–1161PubMedCrossRefGoogle Scholar
  51. Matsuda JL, Gapin L (2005) Developmental program of mouse Valpha14i NKT cells. Curr Opin Immunol 17:122–130PubMedCrossRefGoogle Scholar
  52. Matsuda JL, Gapin L, Fazilleau N, Warren K, Naidenko OV, Kronenberg M (2001) Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor beta repertoire and small clone size. Proc Natl Acad Sci U S A 98:12636–12641PubMedCrossRefGoogle Scholar
  53. Matsuda JL, Gapin L, Sidobre S, Kieper WC, Tan JT, Ceredig R, Surh CD, Kronenberg M (2002) Homeostasis of V alpha 14i NKT cells. Nat Immunol 3:966–974PubMedCrossRefGoogle Scholar
  54. Matsui K, Boniface JJ, Steffner P, Reay PA, Davis MM (1994) Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc Natl Acad Sci U S A 91:12862–12866PubMedCrossRefGoogle Scholar
  55. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529PubMedCrossRefGoogle Scholar
  56. McNab FW, Berzins SP, Pellicci DG, Kyparissoudis K, Field K, Smyth MJ, Godfrey DI (2005) The influence of CD1d in post-selection NKT cell maturation and homeostasis. J Immunol 175:3762–3768PubMedGoogle Scholar
  57. Moody DB, Guy MR, Grant E, Cheng TY, Brenner MB, Besra GS, Porcelli SA (2000a) CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J Exp Med 192:965–976PubMedCrossRefGoogle Scholar
  58. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000b) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888PubMedCrossRefGoogle Scholar
  59. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB, Wilson IA, Costello CE, Brenner MB (2004) T cell activation by lipopeptide antigens. Science 303:527–531PubMedCrossRefGoogle Scholar
  60. Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4:123–132PubMedCrossRefGoogle Scholar
  61. Okamoto N, Kanie O, Huang YY, Fujii R, Watanabe H, Shimamura M (2005) Synthetic alpha-mannosyl ceramide as a potent stimulant for an NKT cell repertoire bearing the invariant Valpha19-Jalpha26 TCR alpha chain. Chem Biol 12:677–683PubMedCrossRefGoogle Scholar
  62. Oki S, Chiba A, Yamamura T, Miyake S (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 113:1631–1640PubMedCrossRefGoogle Scholar
  63. Park SH, Weiss A, Benlagha K, Kyin T, Teyton L, Bendelac A (2001) The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 193:893–904PubMedCrossRefGoogle Scholar
  64. Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI (2002) A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(−)CD4(+) CD1d-dependent precursor stage. J Exp Med 195:835–844PubMedCrossRefGoogle Scholar
  65. Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178:1–16PubMedCrossRefGoogle Scholar
  66. Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329PubMedCrossRefGoogle Scholar
  67. Pry E, Naidenko O, Miyake S, Yamamura T, Berberich I, Cardell S, Kronenberg M, Herrmann T (2006) The complementarity determining region 2 of BV8S2 (Vb8.2) contributes to antigen recognition by rat invariant NK T cell TCR. J Immunol 176:7447–7455Google Scholar
  68. Rauch J, Gumperz J, Robinson C, Skold M, Roy C, Young DC, Lafleur M, Moody DB, Brenner MB, Costello CE, Behar SM (2003) Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J Biol Chem 278:47508–47515PubMedCrossRefGoogle Scholar
  69. Ronet C, Mempel M, Thieblemont N, Lehuen A, Kourilsky P, Gachelin G (2001) Role of the complementarity-determining region 3 (CDR3) of the TCR-beta chains associated with the V alpha 14 semi-invariant TCR alpha-chain in the selection of CD4+ NK T Cells. J Immunol 166:1755–1762PubMedGoogle Scholar
  70. Savage PA, Boniface JJ, Davis MM (1999) A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10:485–492PubMedCrossRefGoogle Scholar
  71. Schumann J, Voyle RB, Wei BY, MacDonald HR (2003) Cutting edge: influence of the TCR V beta domain on the avidity of CD1d:alpha-galactosylceramide binding by invariant V alpha 14 NKT cells. J Immunol 170:5815–5819PubMedGoogle Scholar
  72. Schumann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol 175:7303–7310PubMedGoogle Scholar
  73. Shamshiev A, Donda A, Carena I, Mori L, Kappos L, De Libero G (1999) Self glycolipids as T-cell autoantigens. Eur J Immunol 29:1667–1675PubMedCrossRefGoogle Scholar
  74. Shamshiev A, Donda A, Prigozy TI, Mori L, Chigorno V, Benedict CA, Kappos L, Sonnino S, Kronenberg M, De Libero G (2000) The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13:255–264PubMedCrossRefGoogle Scholar
  75. Shiina T, Ando A, Suto Y, Kasai F, Shigenari A, Takishima N, Kikkawa E, Iwata K, Kuwano Y, Kitamura Y, Matsuzawa Y, Sano K, Nogami M, Kawata H, Li S, Fukuzumi Y, Yamazaki M, Tashiro H, Tamiya G, Kohda A, Okumura K, Ikemura T, Soeda E, Mizuki N, Kimura M, Bahram S, Inoko H (2001) Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21–q22. Genome Res 11:789–802PubMedCrossRefGoogle Scholar
  76. Shimamura M, Ohteki T, Beutner U, MacDonald HR (1997) Lack of directed V alpha 14-J alpha 281 rearrangements in NK1+ T cells. Eur J Immunol 27:1576–1579PubMedCrossRefGoogle Scholar
  77. Shimamura M, Okamoto N, Huang YY, Yasuoka J, Morita K, Nishiyama A, Amano Y, Mishina T (2006) Induction of promotive rather than suppressive immune responses from a novel NKT cell repertoire Valpha19 NKT cell with alpha-mannosyl ceramide analogues consisting of the immunosuppressant ISP-I as the sphingosine unit. Eur J Med Chem 41:569–576PubMedCrossRefGoogle Scholar
  78. Sidobre S, Naidenko OV, Sim BC, Gascoigne NR, Garcia KC, Kronenberg M (2002) The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 169:1340–1348PubMedGoogle Scholar
  79. Sidobre S, Hammond KJ, Benazet-Sidobre L, Maltsev SD, Richardson SK, Ndonye RM, Howell AR, Sakai T, Besra GS, Porcelli SA, Kronenberg M (2004) The T cell antigen receptor expressed by Valpha14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc Natl Acad Sci U S A 101:12254–12259PubMedCrossRefGoogle Scholar
  80. Sim BC, Holmberg K, Sidobre S, Naidenko O, Niederberger N, Marine SD, Kronenberg M, Gascoigne NR (2003) Surprisingly minor influence of TRAV11 (Valpha14) polymorphism on NKT-receptor mCD1/alpha-galactosylceramide binding kinetics. Immunogenetics 54:874–883PubMedGoogle Scholar
  81. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB (2000) Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 191:937–948PubMedCrossRefGoogle Scholar
  82. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701PubMedCrossRefGoogle Scholar
  83. Stanic AK, Shashidharamurthy R, Bezbradica JS, Matsuki N, Yoshimura Y, Miyake S, Choi EY, Schell TD, Van Kaer L, Tevethia SS, Roopenian DC, Yamamura T, Joyce S (2003) Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor [corrected]. J Immunol 171:4539–4551PubMedGoogle Scholar
  84. Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, Brenner MB (1999) Separate pathways for antigen presentation by CD1 molecules. Immunity 11:743–752PubMedCrossRefGoogle Scholar
  85. Sullivan BA, Kraj P, Weber DA, Ignatowicz L, Jensen PE (2002) Positive selection of a Qa-1-restricted T cell receptor with specificity for insulin. Immunity 17:95–105PubMedCrossRefGoogle Scholar
  86. Terabe M, Khanna C, Bose S, Melchionda F, Mendoza A, Mackall CL, Helman LJ, Berzofsky JA (2006) CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Res 66:3869–3875PubMedCrossRefGoogle Scholar
  87. Terszowski G, Muller SM, Bleul CC, Blum C, Schirmbeck R, Reimann J, Pasquier LD, Amagai T, Boehm T, Rodewald HR (2006) Evidence for a functional second thymus in mice. Science 312:284–287PubMedCrossRefGoogle Scholar
  88. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169PubMedCrossRefGoogle Scholar
  89. Treiner E, Duban L, Moura IC, Hansen T, Gilfillan S, Lantz O (2005) Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect 7:552–559PubMedCrossRefGoogle Scholar
  90. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA (2003) T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087PubMedCrossRefGoogle Scholar
  91. Urdahl KB, Sun JC, Bevan MJ (2002) Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 3:772–779PubMedGoogle Scholar
  92. Van Rhijn I, Young DC, Im JS, Levery SB, Illarionov PA, Besra GS, Porcelli SA, Gumperz J, Cheng TY, Moody DB (2004) CD1d-restricted T cell activation by nonlipidic small molecules. Proc Natl Acad Sci U S A 101:13578–13583PubMedCrossRefGoogle Scholar
  93. Vincent MS, Xiong X, Grant EP, Peng W, Brenner MB (2005) CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J Immunol 175:6344–6351PubMedGoogle Scholar
  94. Wang XL, Altman JD (2003) Caveats in the design of MHC class I tetramer/antigen-specific T lymphocytes dissociation assays. J Immunol Methods 280:25–35PubMedCrossRefGoogle Scholar
  95. Wei DG, Lee H, Park SH, Beaudoin L, Teyton L, Lehuen A, Bendelac A (2005) Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med 202:239–248PubMedCrossRefGoogle Scholar
  96. Wei DG, Curran SA, Savage PB, Teyton L, Bendelac A (2006) Mechanisms imposing the Vbeta bias of Valpha14 natural killer T cells and consequences for microbial glycolipid recognition. J Exp Med 203:1197–1207PubMedCrossRefGoogle Scholar
  97. Wingender G, Berg M, Jungerkes F, Diehl L, Sullivan BA, Kronenberg M, Limmer A, Knolle PA (2006) Immediate antigen-specific effector functions by TCR-transgenic CD8+ NKT cells. Eur J Immunol 36:570–582PubMedCrossRefGoogle Scholar
  98. Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103:3972–1397PubMedCrossRefGoogle Scholar
  99. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181PubMedCrossRefGoogle Scholar
  100. Wu LC, Tuot DS, Lyons DS, Garcia KC, Davis MM (2002) Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418:552–556PubMedCrossRefGoogle Scholar
  101. Yu KO, Im JS, Molano A, Dutronc Y, Illarionov PA, Forestier C, Fujiwara N, Arias I, Miyake S, Yamamura T, Chang YT, Besra GS, Porcelli SA (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc Natl Acad Sci U S A 102:3383–3388PubMedCrossRefGoogle Scholar
  102. Zajonc DM, Elsliger MA, Teyton L, Wilson IA (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat Immunol 4:808–815PubMedCrossRefGoogle Scholar
  103. Zajonc DM, Cantu C 3rd, Mattner J, Zhou D, Savage PB, Bendelac A, Wilson IA, Teyton L (2005a) Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 6:810–818PubMedCrossRefGoogle Scholar
  104. Zajonc DM, Crispin MD, Bowden TA, Young DC, Cheng TY, Hu J, Costello CE, Rudd PM, Dwek RA, Miller MJ, Brenner MB, Moody DB, Wilson IA (2005b) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–219PubMedCrossRefGoogle Scholar
  105. Zamoyska R (1998) CD4 and CD8:modulators of T-cell receptor recognition of antigen and of immune responses? Curr Opin Immunol 10:82–87PubMedCrossRefGoogle Scholar
  106. Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277:339–345PubMedCrossRefGoogle Scholar
  107. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. A. Sullivan
    • 1
  • M. Kronenberg
    • 1
  1. 1.La Jolla Institute for Allergy and ImmunologyLa JollaUSA

Personalised recommendations