Instantiating Uninterpreted Functional Units and Memory System: Functional Verification of the VAMP

  • Sven Beyer
  • Chris Jacobi
  • Daniel Kröning
  • Dirk Leinenbach
  • Wolfgang J. Paul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2860)


In the VAMP (verified architecture microprocessor) project we have designed, functionally verified, and synthesized a processor with full DLX instruction set, delayed branch, Tomasulo scheduler, maskable nested precise interrupts, pipelined fully IEEE compatible dual precision floating point unit with variable latency, and separate instruction and data caches. The verification has been carried out in the theorem proving system PVS. The processor has been implemented on a Xilinx FPGA.


Model Check Main Memory Data Cache Memory Unit Instruction Cache 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berg, C., Jacobi, C.: Formal verification of the VAMP floating point unit. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 325–339. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Brock, B., Hunt, W.A., Kaufmann, M.: The FM9001 microprocessor proof. Technical Report Technical Report 86, Computational Logic Inc. (1994)Google Scholar
  3. 3.
    Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessors control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Chen, Y.-A., Clarke, E.M., Ho, P.-H., Hoskote, Y., Kam, T., Khaira, M., O’Leary, J.W., Zhao, X.: Verification of all circuits in a floating-point unit using word-level model checking. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 19–33. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Damm, W., Pnueli, A.: Verifying out-of-order executions. In: Charme IFIP WG10.5, Montreal, Canada, pp. 23–47. Chapman & Hall, Boca Raton (1997)Google Scholar
  6. 6.
    Eiriksson, A.P.: The formal design of 1M-gate ASICs. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 49–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture:A Quantitative Approach, 2nd edn. Morgan Kaufmann, San Mateo (1996)MATHGoogle Scholar
  8. 8.
    Hosabettu, R., Srivas, M., Gopalakrishnan, G.: Proof of correctness of a processor with reorder buffer using the completion functions approach. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 47–59. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Institute of Electrical and Electronics Engineers. ANSI/IEEE standard 754–1985, IEEE Standard for Binary Floating-Point Arithmetic (1985)Google Scholar
  10. 10.
    Jacobi, C.: Formal verification of complex out-of-order pipelines by combining modelchecking and theorem-proving. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Jacobi, C.: Formal Verificaton of a fully IEEE compliant floating point unit. PhD thesis, Saarland University, Germany (2002)Google Scholar
  12. 12.
    Kroening, D.: Formal Verification of Pipelined Microprocessors. PhD thesis, Saarland University, Computer Science Department (2001)Google Scholar
  13. 13.
    Kröning, D., Müller, S., Paul, W.: Proving the correctness of pipelined micro-architectures. In: 3ITG-/GI/GMM-Workshop Methoden und Beschreibungsprachen zur Modellierung und Verifikation von Schaltungen und System, pp. 89–98. VDE Verlag (2000)Google Scholar
  14. 14.
    Kröning, D., Müller, S., Paul, W.: Proving the correctness of processors with delayed branch using delayed PCs. pp. 579–588 (2000)Google Scholar
  15. 15.
    Kröning, D., Paul, W.: Automated pipeline design. In: Proc. of the 38th Design Automation Conference, pp. 810–815. ACM Press, New York (2001)Google Scholar
  16. 16.
    McMillan, K.: Verification of an implementation of Tomasulo’s algorithm by compositional model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.: Parameterized verification of the FLASH cache coherence protocol by compositional model checking. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, p. 179. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Mueller, S.M., Paul, W.J.: Computer Architecture. Complexity and Correctness. Springer, Heidelberg (2000)MATHGoogle Scholar
  19. 19.
    O’Leary, J., Zhao, X., Gerth, R., Seger, C.-J.H.: Formally verifying IEEE compliance of floating-point hardware. Intel Technology Journal Q1 (1999)Google Scholar
  20. 20.
    Owre, S., Shankar, N., Rushby, J.M.: PVS:A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the floating point multiplication, division and square root algorithms of the AMD-K7 processor. LMS Journal of Computation and Mathematics 1, 148–200 (1998)MATHMathSciNetGoogle Scholar
  22. 22.
    Russinoff, D.M.: A case study in formal verification of register-transfer logic withACL2: The floating point adder of the AMD Athlon processor. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 3–36. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Sawada, J., Hunt, W.A.: Trace table based approach for pipelined microprocessor verification. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)Google Scholar
  24. 24.
    Sawada, J., Hunt, W.A.: Processor verification with precise exceptions and speculative execution. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Shen, X., Arvind, Rudolph, L.: CACHET: an adaptive cache coherence protocol for distributed shared-memory systems. In: International Conference on Supercomputing (1999)Google Scholar
  26. 26.
    Stoy, J., Shen, X., Arvind: Proofs of correctness of cache-coherence protocols. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, p. 43. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Velev, M.N., Bryant, R.E.: Superscalar processor verification using efficient reductions of the logic of equality with uninterpreted functions to propositional logic. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 37–53. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Velev, M.N., Bryant, R.E.: Formal verification of superscale microprocessors with multicycle functional units, exception, and branch prediction. In: DAC, ACM, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sven Beyer
    • 1
  • Chris Jacobi
    • 2
  • Daniel Kröning
    • 3
  • Dirk Leinenbach
    • 1
  • Wolfgang J. Paul
    • 1
  1. 1.Computer Science DepartmentSaarland UniversitySaarbrückenGermany
  2. 2.IBM Deutschland Entwicklung GmbH, Processor Dev. IIBöblingenGermany
  3. 3.Computer ScienceCarnegie Mellon UniversityPittburgh

Personalised recommendations