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Abstract. In the VAMP (verified architecture microprocessor) project we have
designed, functionally verified, and synthesized a processor with full DLX instruc-
tion set, delayed branch, Tomasulo scheduler, maskable nested precise interrupts,
pipelined fully IEEE compatible dual precision floating point unit with variable
latency, and separate instruction and data caches. The verification has been carried
out in the theorem proving system PVS. The processor has been implemented on
a Xilinx FPGA.

1 Introduction

Previous Work. Work on the formal verification of processors so far has concentrated
mainly on the following aspects of architectures:

i) Processors with in-order scheduling, one or several pipelines including forwarding,
stalling and interrupt mechanisms [3,13,28]. The verification of the very simple, non-
pipelined FM9001 processor has been reported in [2]. Using the flushing method
from [3] and uninterpreted functions for modeling execution units, superscalar pro-
cessors with multicycle execution units, exceptions and branch prediction [28] have
been verified by automatic BDD based methods. Also, one can transform specifica-
tion machines into simple pipelines (with forwarding and stalling mechanism) by
an automatic transformation, and automatically generate formal correctness proofs
for this transformation [15].

ii) Tomasulo schedulers with reorder buffers for the support of precise interrupts [5,8,
16,24]. Exploiting symmetries, McMillan [16] has shown the correctness of a pow-
erful Tomasulo scheduler with a remarkable degree of automation. Using theorem
proving, Sawada and Hunt [24] show the correctness of an entire out-of-order pro-
cessor, precise interrupts, and a store buffer for the memory unit. They also consider
self-modifying code (by means of a sync instruction).
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iii) Floating point units(FPU). The correctness of an important collection of floating
point algorithms is shown in [21,22] using the theorem prover ACL2. Correctness
proofs using a combination of theorem proving and model checking techniques for
the FPUs of Pentium processors are claimed in [4,19]. As the verified unit is part of
an industrial product not all details have been published. Based on the constructions
and on the paper and pencil proofs in [18] a fully IEEE compatible FPU has been
verified [1,11] (using mostly but not exclusively theorem proving).

iv) Caches. Multiple cache coherence protocols have been formally verified, e.g., [6,17,
25,26]. Paper and pencil proofs are extremely error prone, and hence the generation
of proofs for interactive theorem proving systems is slow. The method of choice is
model checking. The compositional techniques employed by McMillan [17] even
allow for the verification of parameterized designs, i.e., cache coherence is shown
for an arbitrary number of processors.

Simplifications, Abstractions, and Restrictions. Except for the work on floating point
units, the cache coherence protocol in [6], and the FM9001 processor [2], none of the
papers quoted above states that the verified design actually has been implemented. All
results cited above except [1,2,6,11] use several simplifications and abstractions:

i) The realized instruction set is restricted: always included are the six instructions
considered in [3]: load word, store word, jump, branch equal zero, three registerALU
operations,ALU immediate operations. Five typical extra instructions are trap, return
from exception, move to and from special registers, and sync [24]. The branch equal
zero instruction is generalized in [28] by an uninterpreted test evaluation function.
Most notably the verification of machines with load/store operations on half words
and bytes has apparently not been reported. In [27] the authors report an attempt
to handle these instructions by automatic methods which was unsuccessful due to
memory overflow.

ii) Delayed branch is replaced by non-deterministic speculation (speculating branch
taken/not taken).

iii) Sometimes, non-implementable constructs are used in the verification of the pro-
cessors: e.g., Hosabettu et.al. [8] use tags from an infinite set. Obviously, this is not
directly implementable in real hardware.

iv) The verification of the FPUs does neither cover the handling of denormal numbers
nor of exception flags. The verification of a dual precision FPU has not been reported
(though, obviously, Intel’s and AMD’s FPUs are capable of dual precision).

v) No verification of a memory unit with caches has been reported. Eiriksson [6] only
reports the verification of a bit-level implementation of a cache coherence protocol
without data consistency.

vi) The verification of pipelines or Tomasulo schedulers with instantiated floating point
units and memory units with caches and main memory bus protocol has not been
reported. Indeed, in [27] the authors state: “An area of future work will be to prove
that the correctness of an abstract term-level model implies the correctness of the
original bit-level design.”

Results and Overview. In the VAMP (verified architecture microprocessor) project we
have designed, functionally verified, and synthesized a processor with full DLX in-
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struction set, delayed branch, Tomasulo scheduler, maskable nested precise interrupts,
pipelined fully IEEE 754 [9] compatible dual precision floating point unit with variable
latency, as well as separate, coherent instruction and data caches. We use only finite
tags in the hardware. Thus all abstractions, restrictions and simplifications mentioned
above have been removed. Specification and verification was performed using the in-
teractive theorem proving system PVS [20]. All formal specifications and proofs are
on our web site.1 The hardware description was automatically extracted from PVS and
translated into Verilog HDL by a tool sketched in section 7. Hardware with non verified
rudimentary software is up and running on a Xilinx FPGA. The Verilog design can also
be downloaded from our web site.

In section 2, we summarize the fixed point instruction set, its floating point extension,
and the interrupt support realized. We give a micro-architectural overview with a focus
on the memory system. Section 3 describes the correctness criterion, the main proof
strategy, and the integration of the execution units into the Tomasulo core. Correctness
criterion and proof strategy are based on scheduling functions [14,18] (similar to the
stg-component of MAETTs [23]). The model of the execution unit is in a nontrivial way
more general than previous models without complicating interactive proofs too much.

Section 4 presents a delayed branch mechanism, which is automatically constructed
and proven correct by the methods for automatic pipeline construction from [15] and
summarizes the specification of an interrupt mechanism for maskable nested precise
interrupts and delayed PC from [18]. Section 5 deals with the integration of the floating
point unit from [11] into our Tomasulo scheduler. Section 6 deals with loads and stores
of double words, words, half words, and bytes at a 64 bit cache/memory interface. We
also sketch correctness proofs of the implementation of a simple coherence protocol
between data cache and instruction cache, as well as the implementation of a main
memory bus protocol. Section 7 describes the implementation of the VAMP on a Xilinx
FPGA. Section 8 gives an overview of the verification effort for various parts of the
project, summarizes our work, and sketches directions of some future work.

2 Overview of the VAMP Processor

Instruction Set. The full DLX instruction set from [7] is realized. This includes loads
and stores for double words, words, half words, and bytes, various shift operations, and
two jump-and-link operations. Loads of bytes and half words can be unsigned or signed.
In order to support the pipelining of instruction fetches, delayed branch with one delay
slot is used. Note that delayed branch changes the sequential semantics of program
execution.

The floating point extension of the DLX instruction set from [18] is supported. The
user sees a floating point register file with 32 registers of single precision numbers as well
as a single floating point condition code register FCC. Pairs of floating point registers can
be accessed as registers for double precision numbers (with an even register address).
Supported operations are: i) loads and stores for singles and doubles. ii) +, −, ×, ÷ both
for single and double precision numbers. iii) test-and-set, the result is stored in FCC.

1 http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/
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Fig. 1. Main data paths of the VAMP processor

iv) conditional branches as a function of FCC. v) conversions between singles, doubles
and integers. vi) moves between the general purpose register file and the floating point
register file. Operations are fully IEEE compatible [9]. In particular, all four rounding
modes, denormal numbers, and exponent wrapping as a function of the interrupt masks
are realized.

Interrupt Support. Presently, the interrupts from table 1 in section 4 are supported. In-
terrupts are maskable and precise. Floating point interrupts are accumulated in 5 bits of
a special purpose register IEEEf (IEEE flag) as prescribed by the IEEE standard. All
special purpose registers (details in section 4) are collected into a special purpose reg-
ister file. Operations supporting the interrupt mechanism are: i) moves between general
purpose registers and special purpose registers. ii) trap. iii) return-from-exception.

Microarchitecture Overview. Figure 1 gives a high level overview of the VAMP mi-
croarchitecture. Stages IF and ID are a pipelined implementation of delayed branch
as explained in section 4. Stages EX, C and WB realize a Tomasulo scheduler with 5
execution units, a fair scheduling policy on the common data bus CDB, and a reorder
buffer ROB (for precise interrupts). The execution units are i) MEM: memory unit with
variable latency and internal pipelining. There is presently no store buffer. ii) XPU: the
fixed point unit. iii) FPU1 to FPU3: specialized pipelined floating point units with vari-
able latency. FPU1 performs additions and subtractions. FPU2 performs multiplications
and divisions. FPU3 performs test-and-set as well as conversions. The data output of the
reorder buffer is 64 bits wide. The floating point register file FPR is physically realized
as 16 registers, each 64 bits wide. The general purpose registers file GPR and the special
purpose register file SPR are both 32 bits wide, and have 32 and 9 entries, respectively.
They are connected to the low-order bits of the ROB output.



Instantiating Uninterpreted Functional Units and Memory System 55

reservation station

fetchproducer

adr datatag IR valid

IR ipfimaldoutEData CA

clear PC cache resetstall out ibusyROBhead

PC[2]

dsel

PC[0]PC[1]
0

validtagstall in

Mif

clearimr pc

ibusy
inst

mr
mw
adr
din
mbw
dbusy
dout

gen pccomp adr

gen bw flags

tag adrmbw data ctrl

f lags2 shift4load

shift4store

Fig. 2. Data paths of the VAMP memory unit

Figure 2 depicts a simplified view of the memory unit. Internally, it has two pipeline
stages. The first stage does address and control signal computations. The second stage
performs the actual data cache access via signals adr, din, and dout. Instructions are
fetched from the instruction cache via signals pc and inst. The memory interface Mif
internally consists of a data cache, an instruction cache, and a main memory. The caches
are kept coherent (this does not suffice to guarantee correct execution of self-modifying
code). Details are explained in section 6.

3 Correctness Criterion and Tomasulo Algorithm

Notations. We consider a specification machine S and an implementation machine I .
Configurations of these machines are tuples, whose components RS and RI , respectively,
are registers or memories. Register contents are bit strings. Memory contents are modeled
as mappings from addresses (bit strings) to bit strings. For example, PCS denotes the
program counter of the specification machine, and memI denotes the main memory of
the implementation machine.

The specification machine processes a sequence of instructions I0, I1, . . . at the
rate of one instruction per step. We denote by Ri

S the content of component R before
execution of instruction Ii. One step of the implementation machine is a hardware cycle,
and we denote by RT

I the content of component R during cycle T . The fetch of the 4
bytes of an an instruction into the instruction register IR of the implementation machine
during cycle T can be specified by IRT+1

I := memT
I [PCT

I + 3 : PCT
I ].

Although the instruction register is not a visible register, one can specify the desired
content IRi

S of the instruction register for the specification machine for instruction Ii as
a function of the visible components by IRi

S = memi
S [PCi

S + 3 : PCi
S ]. Defining the
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next configuration ci+1
S of the specification machine involves many such intermediate

definitions, e.g., the immediate constant immi
S , the effective address eai

S , etc. Starting
from the visible components RS we extend the configuration of the specification machine
in this way by numerous (redundant) secondary components.

Scheduling Functions. For hardware cycles T and pipeline stages k of the implementa-
tion machine, we formally define an integer valued scheduling function sI(k, T ) [14],
where sI(k, T ) = i has the intended meaning that an instruction Ii is during cycle T in
stage k.

By treating instruction numbers like integer valued tags,2 the definition of these
functions is straightforward. We initialize sI(k, 0) := 0 for all stages. We then “clock”
these tags through the pipeline stages under the control of the update enable signals3

uek for the output registers of stage k. If a stage is not clocked, the scheduling function
is not changed, i.e., sI(k, T ) := sI(k, T − 1) if /ueT−1

k . Note that we introduce
separate “stages” k for each reservation station and ROB entry.

For the fetch stage4, e.g., we define sI(fetch, T ) := sI(fetch, T − 1) + 1 if
ueT−1

fetch, meaning that the content of the fetch stage progresses by one instruction in the
instruction stream I0, I1, . . . If stage k receives data from stage k′ in cycle T, we define
sI(k, T ) := sI(k′, T − 1). Note that this covers the case that a stage can receive data
from two different stages and k′′, since in a fixed cycle T , it receives data from only
one of these stages. This occurs at the ROB, e.g., where we allow bypassing branch
instructions from the instruction register directly into the ROB without going through an
execution unit. Thus, the ROB can receive data from the CDB and from the instruction
register.

As a form of bookkeeping for the memory unit, we introduce an additional “stage”
mem′. The corresponding scheduling function sI(mem′, T ) equals sI(mem, T ) if the
memory unit is empty or the instruction in the unit has not accessed the main memory
yet. Otherwise, we set sI(mem′, T ) := sI(mem, T ) + 1. We need this bookkeeping
function in order to model whether the memory is already updated by a store instruction.

Correctness Criterion. We are interested in the content of the main memory mem and
the register files RF ∈ {GPR, FPR, SPR} after certain instructions Ii respectively
before instruction Ii+1. The main memory is an output “register” of stage mem and
the register files are output “registers” of stage wb. The functional correctness criterion
requires an instruction Ii in stage mem′ of the implementation machine I to see the
same memory content as the corresponding instruction of the specification machine S;

formally memT
I = mem

sI(mem′,T )
S . The corresponding condition for register files RF

is RFT
I = RF

sI(wb,T )
S . In general, we prove by induction on T for all stages k and

all output registers R of stage k that RT
I = R

sI(k,T )
S , where Ri

S can be a visible or

2 Having integer valued tags is only a proof trick. In hardware, we only use finite tags. During
the proof of correctness for the Tomasulo scheduler, we prove that these finite tags properly
match to the infinite instruction number.

3 Update enable signals are sometimes called ‘register activates’. They are used to (de-)activate
updating of register contents.

4 We introduce symbolic names for some stages k, e.g., fetch and mem.
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redundant component of the configuration of the specification machine. Note that for
technical reasons, we claim for the instruction register that IRT

I = IR
sI(fetch,T )−1
S .

The liveness criterion states that all instructions that are not interrupted reach the
writeback stage.At the time of submission of this paper, we have separate formal liveness
proofs for the scheduler and the execution units; we are currently working on combining
them into a single formal liveness proof for the entire machine.

Paper and pencil proofs for the correct-

dataout tagout validout

clear

stallin

datain tagin validin stallout

reservation station

producer

Execution Unit

Fig. 3. Model of an execution unit

ness of Tomasulo schedulers tend to follow
a canonical pattern: i) For instructions Ii and
register operand R, one defines last(i, R)
as the index of the last instruction before Ii

which wrote register R. ii) One shows by in-
duction that the formal definitions of tags and
valid bits have the intended meaning. In our
setting, this means that the finite tags in hard-
ware correspond to the integer valued tags
provided by the scheduling function sI . iii)
Finally, one has to show that the reservation

station of instruction Ii reconstructs R
last(i,R)
S . The rest is easy.

It is important to observe that the structure of these paper and pencil proofs and their
formal (theorem proving) counter parts do not depend much on the fixed or variable
latency of execution units or whether these units are pipelined. The scheduler recognizes
instructions completed by the execution units simply by examining the tags returned from
the units. The situation is very different for model checking [28].

Integration of Execution Units. The proofs for the scheduler and the proofs for the
execution units are separated by the following specifications for the execution units [11,
10]. Notations refer to figure 3.

i) stallTin =⇒ � validT
out, i.e., if the scheduler asserts stallin, the execution unit does

not return a valid instruction.
ii) ∀T∃T ′ > T :� stallT

′
out, i.e., the stallout signal is never active indefinitely.

iii) Instructions dispatched with tagin = tg at time T will eventually (at time T ′ ≥ T )
return a result with the same tag , i.e., tagT ′

out = tg. Moreover, dataT ′
out = f(dataT

in)
where f is the (combinatorial) function the execution unit is supposed to compute.

iv) For each time T at which a result with tag tg is returned, there is an earlier time
T ′ ≤ T such that an instruction with tag tg was dispatched at time T ′, and tag tg was
not returned between T ′ and T . Hence, the execution units do not create spurious
outputs.

Note that the instructions do not need to leave the execution units in the order they enter
the units; all FPUs, e.g., exploit this by allowing instructions on some special operands to
overtake other instructions. Moreover, multiplications may overtake divisions (cf. [10]
for details).

The four conditions above must be shown for each of the execution units provided
the scheduler guarantees the following three conditions: i) No instruction is dispatched
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to an execution unit which sends a stallout signal to its reservation station. ii) The
execution units are not stalled forever by the producers. iii) Tag-uniqueness: no tag
which is dispatched into an execution unit is already in use.

4 Delayed Branch and Maskable Nested Precise Interrupts

In the delayed branch mechanism, taken branches yield a new PC of the form PC +
imm+4, taken branches are delayed, and PC+8 is saved to the register file during jump-
and-link. In the equivalent delayed PC mechanism [14,18], one uses an intermediate
program counter PC ′ with branch targets PC ′+imm, all fetches use a delayed program
counter DPC, and PC ′ + 4 is saved during jump-and-link.

Figure 4 depicts a pipelined implementation of the delayed PC mechanism in the
VAMP processor. This construction and its formal correctness proof are automatically
obtained by the method for automatic pipeline construction from [15]. Indeed, fetching
instructions from the intermediate program counter PC ′ is—not only intuitively but
formally—forwarding of DPC. The role of the multiplexers above PC ′ and DPC are
explained in the following paragraphs about interrupts.

The formal specification of the interrupt

PC’DPC
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01JISR

1 0

EDPC

SISR

0 1
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ROB
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ID
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in
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IF

Fig. 4. VAMP PC Environment

mechanism for delayed PC is based on the defini-
tions of [18, Chap. 5, 9.1]. Table 1 shows the sup-
ported interrupts.5 The special purpose registers
for the interrupt mechanism are: i) status register
SR for interrupt masks, ii) two registers ECA for
exception cause and EData for parameters passed
to the interrupt service routine, iii) two registers
EPC and EDPC for return addresses for PC ′

and DPC and iv) a register IEEEf for the accu-
mulation of masked floating point exceptions.

At issue time of an instruction Ii, it is unknow
whether Ii will be interrupted and whether the in-
terrupt requires to repeat the interrupted instruc-
tion or not. Therefore, we have to save two pairs
of potential return addresses in the reorder buffer:
(PC ′i

S , DPCi
S) for interrupts of type “repeat”,

and the results of the uninterrupted next PC ′ and
next DPC computations (PC ′u,i+1

S , DPCu,i+1
S ) for interrupts of type “continue”. The

data paths of the PC environment are shown in figure 4.
Interrupt handling in the specification machine S depends on the components ECA

and EData. In the implementation, these two registers are treated as additional results of
the execution units; thus, execution units have up to four 32-bit results. This affects the
width of the ROB. The formal correctness of these components in the ROB at writeback
time is asserted without additional verification effort by the consistency of the Tomasulo
scheduler. Further lemmas are needed for the correctness of the PCs stored in the ROB.
The return-from-exception instruction is treated like any other instruction; no special
effort is needed here.

5 Page fault signals are presently tied to zero.
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Table 1. Implemented interrupts

index name maskable type index name maskable type

0 reset no abort 7 FPU overflow yes continue
1 illegal instruction no repeat 8 FPU underflow yes continue
2 misalignment no repeat 9 FPU loss of accuracy yes continue
3 page fault on fetch no repeat 10 FPU division by zero yes continue
4 page fault load store no repeat 11 FPU invalid yes continue
5 trap no continue 12 FPU unimplemented no continue
6 arithmetic overflow yes continue

Since the main memory is updated before writeback of an instruction, one has to
guarantee that in case of an interrupt, all stores prior to the interrupted instruction are
executed, but none of the instructions after it. Especially, one has to show that a store
that has reached the writeback stage also has accessed the main memory, i.e., it did not
enter the wrong execution unit.

5 Floating Point Unit

Execution Units. The FPUs and their verification are described in [11]. The construction
and verification of the combinatorial circuits is based on the paper and pencil proofs
from [18]. The internal control of the iterative unit for multiplication and division is
complex: during cycles, when the division unit performs a subtraction step, the multiplier
can be used by multiplication operations or by multiplication steps of other division
operations. Moreover, operations with special operands are processed in a single cycle.
Thus in general, the units do not process instructions in order, but that is not required by
the specifications from section 4. We remark that we have formal proofs but no paper and
pencil proofs for the correctness and liveness of the floating point control. The control
was constructed and verified with the help of a model checker[10].

At first sight, floating point operations have two operands and one result. However,
rounding mode (stored in a special purpose register RM ) and interrupt masks (stored in
SR) are two further operands of every floating point operation.

Moreover, there is aliasing in connection with the addressing of the floating point
registers: each single precision floating point register can be accessed by single precision
operations as well as by double precision operations. The ISA does not preclude the
construction of a double precision operand by two writes with single precision to the
upper and lower half of a double precision register. It can be necessary to forward these
two results from separate places whether the double precision operand is read. This is
easily realized by treating the upper half and the lower half of double precision operands
as separate operands. Thus, reservation stations for dual precision floating point units
have 6 operands.

IEEE Flags and Synchronization. The exception flags for interrupts 6 to 12 are part of
the result of every floating point operation Ii. They are accumulated in special purpose
register IEEEf during writeback of Ii. We have already seen in section 4 that this affects



60 S. Beyer et al.

the width of the reorder buffer. A move operation Ij which reads from register IEEEf is
issued only after the entire reorder buffer is empty. This simple modification of the issue
logic makes it very easy to prove that the flags of all floating point operations preceding Ij

are accumulated when IEEEf is read by Ij . A move instruction from IEEEf to general
purpose register 0, which is constantly 0, acts as a sync operation for self-modifying
code as explained at the end of the following section.

6 Memory Interface

Loads and Stores with Variable Operand Width. The formal specification of the seman-
tics of the memory instructions is based on the definitions in [18, Chap. 3]. Accesses
are characterized by their effective address ea and their width in bytes d ∈ {1, 2, 4, 8}.
The access is aligned if ea mod d = 0. Effective addresses ea define a double word
address da(ea) = �ea/8	 and a byte address ba(ea) = ea mod 8. A simple “alignment
lemma” states that for aligned accesses, the memory operand mem[ea + d − 1 : ea]
equals bytes [ba(ea) + d − 1 : ba(ea)] of the double word addressed by da(ea) at the
memory interface.6 Details can be found in [18].

Circuits called shift4load and shift4store are used in order to ensure that data is loaded
and stored correctly. These circuits are shown in figure 2. “Shift for store” denotes shifting
the data, say the halfword which is to be stored, into the correct position of a double-
word before it is sent to the 64-bit wide memory interface. Similarly, “shift for load”
denotes extraction of the requested portion (say halfword) of the 64-bit delivered from
the memory interface. Also, sign-extension is done during “shift for load” for signed
byte- and halfword-loads. Shift for store and load are implemented by means of two
simplified shifters with some control logic [18].

The proof of correctness of the VAMP memory interface is structured hierarchically.
First, we verify the VAMP with an idealized memory interface m spec, a dual-ported
memory without caches. Second, we show that a cache memory interface with split
caches backed up by a unified main memory m impl behaves exactly like the dual-
ported memory m spec. Thus, m spec serves as the specification for the cache memory
interface. By putting these two independent proofs together, we obtain the correctness
of the VAMP with split caches with respect to the memory memS of the specification
machine.

Cache Specification and Implementation. The memory m spec is defined recursively,
i.e., it is updated on the double word address a iff a write access to address a terminates.
Separate byte-enables mwbb allow for updating only some of the 8 bytes stored on
address a. Formally, we have for any byte b < 8 and any double word address a:

m spec[8 · a + b]T+1 :=
{

din[b]T a = adrT ∧ mwT ∧ mwbT
b ∧ � dbusyT

m spec[8 · a + b]T else

The memory interface is implemented with split caches connected to a single main
memory as depicted in figure 5. We use a write-back policy for the data cache, i.e., on a

6 Note that this specifies little endian memory organization.
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write access of the CPU, the data cache is updated and the corresponding data is marked
as dirty. Thus, a slow access to the main memory is avoided. If dirty data is to be evicted
from the cache, it is written back to the main memory in order to ensure data consistency.

The protocol used to keep the caches co-
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Fig. 5. Cache memory interface

herent works as follows: If a cache signals a
hit on a CPU access, the data is read directly
from the cache or written to it, depending on
the type of the CPU access. This allows for
memory accesses that take only one cycle to
complete. If, on the other hand, the cache sig-
nals a miss, the corresponding data has to be
loaded into the cache. The control first exam-
ines the other cache in order to find out if it
holds the required data. In this case, the data
in the other cache is invalidated. If the data to
be invalidated is dirty, this requires an addi-
tional write back to the main memory.

This consistency protocol guarantees ex-
clusiveness, i.e., for any address, at most one
of the two caches signals a hit. In this way, we
ensure that on a hit of the instruction cache,
the data cache does not contain newer data.

The instruction and data caches are implemented as k-way sectored set-associative
caches using a LRU replacement policy. Cache sectors consist of 4 double words since
the bus protocol supports bursts of length 4.

Typical Lemmas. The inductive invariant used to show consistency of split caches as
described above consists of three parts. Two of these parts are obvious: if the data or
instruction cache, respectively, signals a hit, then its output data equals the specified
memory content. However, an invariant consisting only of these two claims is not in-
ductive since caches are reloaded from the main memory. Therefore, we need a third
part of our invariant stating the consistency of data in the main memory. Thus, we also
claim that on a clean hit or a miss in cycle t on address DadrT in the data cache, the
main memory m impl on this address DadrT contains the specified memory content.
Note that on a clean hit in the data cache, we thus claim data consistency in both the
data cache and the main memory. Formally, we have the following claim:

IhitT =⇒ Idout[b]T = m spec[8 · IadrT + b]T ∧
DhitT =⇒ Ddout[b]T = m spec[8 · DadrT + b]T ∧

� (DhitT ∧ dirtyT ) =⇒ m impl[8 · DadrT + b]T = m spec[8 · DadrT + b]T .

This invariant is strong enough to show transparency of the whole memory interface
since the data word returned to the CPU on a read access is just the cache output in case
of a hit, or the data written to the cache during reload in case of a miss. Note that the
invariant relies on the exclusiveness property of the protocol, which has to be verified
as part of the proof of the invariant.
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Fig. 6. 4-burst write timing diagram
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Fig. 7. Burst control FSD

Bus Protocol. The main memory is accessed via a bus protocol featuring bursts. The bus
protocol signals ready data by raising brdy one cycle in advance. A sample timing of a
4-burst write is depicted in figure 6. Note that the data input din one cycle after brdy is
written to the main memory and that the end of the access is signaled by � reqp ∧ brdy.

As part of our correctness proof for the memory interface, we have formalized this bus
protocol and proved that an automaton7 according to figure 7 implements this protocol
correctly by means of theorem proving. The main invariant for this proof is the following:
in the cycle of the i-th memory access of the burst, i.e., after the i-th brdy, the automaton
is in state mem for the i-th time. In the cycle of the last memory access, the automaton
is in state last mem .

Self-Modifying Code. We consider self-modifying code independent of the implementa-
tion of the memory interface. As an additional precondition for the correctness of code,
we demand that in case an instruction is fetched from a memory location adr, there is
a special sync-instruction between the last write to adr and the fetch of adr.8 In the
VAMP architecture, this sync instruction is implemented without additional hardware
by a special move from the IEEEf register to R0 as mentioned in section 5. We have
formally verified that this use of the sync instruction suffices to show the correctness of
the implementation in case of self-modifying code.

7 Synthesis

We have translated the PVS hardware description of the VAMP processor to Verilog
HDL using an automated tool called pvs2hdl. The tool unrolls recursive definitions
and then performs fairly straightforward translation. The Verilog representation of the

7 Note that this bus control FSD is only a part of the FSD for the cache memory interface.
8 This implies the correspondency condition from [23].
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processor (including caches and floating point unit) has been synthesized, implemented,
and tested on a Xilinx FPGA hosted on a PCI board. Some additional unverified hardware
for controlling the VAMP processor and for accessing its memory from the host PC is
also present on this FPGA. The VAMP processor occupies about 18000 slices of a Xilinx
Virtex FPGA. This accounts for a gate count of 1.5 million gates as reported by the Xilinx
tools. The design contains 9100 bits of registers (not counting memory and caches) and
runs at 10 MHz.

Note that we assume a fully synchronous design, i.e., all registers share the same
clock and RAM blocks for register files or caches are also updated synchronous to this
clock; thus, concerning timing, they can be treated like registers. In a fully synchronous
design, valid data is needed only at the rising edge of the clock with certain setup-
and hold-times. The synthesis software analyzes all paths between inputs and registers,
registers and registers, and registers and outputs; thus, it can guarantee that our logical
design can be implemented with a certain maximum clock speed preserving all our
proved properties. In particular, we fully ignore any glitches, i.e., instabilities in signals
during a clock period that are resolved until the next rising edge of the clock since these
glitches do not influence fully synchronous designs. Thus, our approach does not cover
designs where certain signals must be kept stable for several cycles, i.e., where glitches
must not occur. This is the case for asynchronous EDO-RAM chips that need stable
addresses for a fixed amount of time. Since we use synchronous RAM chips, our proofs
guarantee the correctness of the design regardless of any occurring glitches.

We have ported the gcc and the GNU C library for the VAMP in order to execute test
programs on the VAMP. As it was to be expected from our verified design, we found no
errors in the VAMP processor. When testing some cases of denormal results of floating
point operations, however, we found differences between the VAMP FPU and Intel’s
Pentium II FPU. This is due to some discrepancies of Intel’s FPU to the IEEE standard.
See [11] for further details.

8 Conclusion

Verification Effort. The formal verification of the VAMP microprocessor took about
eight person-years; for the translation tool and synthesis on the FPGA, an additional
person-year was required. Table 2 summarizes the verification effort for the different
parts of the VAMP. Note especially that “Putting it all together” took a whole person-
year for several reasons. First of all, the proof of the Tomasulo core from [12] was
only generic and had to be applied to the VAMP architecture, especially the VAMP
instruction set. Unfortunately, in spite of thorough planning on our part, the interfaces
between the different parts did not match exactly. Thus, a lot of effort went into patching
the interfaces. Additionally, self-modifying code and the special implementation of the
IEEEf -register had to be considered. Also, interrupt support and a memory unit still
had to be added to the formally verified Tomasulo core. Last but not least, PVS does
not really scale too well for projects this large; typechecking of the VAMP alone takes
already more than two hours on our fastest machine.

To the best of our knowledge, we have reported for the first time the formal ver-
ification of i) a processor with the full DLX instruction set including load and store
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Table 2. Verification effort

Part Effort in years Lemmas Proof steps

Tomasulo core & ALU 2 521 14367
FPU 3 1046 25936
Cache Memory Interface 2 566 24432
Putting it all together 1 415 23887

Total 8 2548 88622

instructions for bytes, half words, words, and double words, ii) a processor with delayed
branch, iii) a processor with maskable nested interrupts, iv) a processor with integrated
floating point unit, v) a memory system with separate instruction and data cache. More
importantly, the above mentioned constructions and proofs are integrated into a single
design and a single correctness proof. Thus, we can be sure that no oversimplifications
have been made in any part of the design. PVS ensures that there are no proof gaps left.

The design is synthesized9 and implemented on an FPGA. The complexity of the
design is comparable to industrial controllers with FPUs. To the best of our knowledge,
VAMP is by far the most complex processor formally verified so far.

We see several directions for further work in the near future. i) Adding a store buffer
to the memory unit. ii) The treatment of a memory management unit with separate trans-
lation look aside buffers for data and instructions. iii) Proving formally that a machine
with memory management unit and appropriate page fault handlers as part of the op-
erating system gives a single user program the view of a uniform virtual memory. This
requires to argue about hardware and software simultaneously. iv) Redoing as much as
possible of the present correctness proof with automatic methods. For such methods any
subset of our lemmas lends itself as a benchmark suite with a very nice property: we
know that it can be completed to the correctness proof of a full bit-level design.
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