Advertisement

Dynamic Surge Protection: An Approach to Handling Unexpected Workload Surges with Resource Actions that Have Lead Times

  • E. Lassettre
  • D. W. Coleman
  • Y. Diao
  • S. Froehlich
  • J. L. Hellerstein
  • L. Hsiung
  • T. Mummert
  • M. Raghavachari
  • G. Parker
  • L. Russell
  • M. Surendra
  • V. Tseng
  • N. Wadia
  • P. Ye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2867)

Abstract

Today’s information technology departments have significantly varying demands for resources due to unexpected surges in subscriber demands (e.g., a large response to a product promotion). Further complicating matters is that many resource actions done in response to surges (e.g., provisioning or de-provisioning an application server) have substantial delays (lead times) between initiating the resource action and its taking effect. This paper describes dynamic surge protection, an approach to handling unexpected workload surges in systems that have lead times for resource actions. Dynamic surge protection incorporates three technologies: adaptive short-term forecasting, on-line capacity planning, and configuration management. The paper includes empirical results from evaluations done on a research testbed, including favorable comparisons with a threshold-based heuristic. The results from an extended test also show that service objectives can be maintained cost-effectively.

Keywords

Lead Time Application Server Busy Period Resource Action Service Level Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aman, J., Eilert, C.K., Emmes, D., Yocom, P., Dillenberger, D.: Adaptive algorithms for managing a distributed data processing workload. IBM Systems Journal 36(2) (1997)Google Scholar
  2. 2.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day (1976)Google Scholar
  3. 3.
    Chandra, A., Goyal, P., Shenoy, P.: Quantifying the benefits of resource multiplexing in on-demand data centers. In: Proceedings of the First ACM Workshop on Algorithms and Architectures for Self-Managing Systems (2003) (to appear)Google Scholar
  4. 4.
    Crovella, M.E.: Performance characteristics of the world wide web. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1769, p. 219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    IBM High: volume web site performance simulator (2002), http://www7b.boulder.ibm.com/wsdd/library/techarticles/hvws/perfsimulator.html
  6. 6.
    IBM. Autonomic computing (2003), http://www.ibm.com/autonomic
  7. 7.
    Bill Lefebvre. Facing a world crisis. USENIX LISA (2001)Google Scholar
  8. 8.
    Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H., Lee, T.C.: Introduction to the Theory and Practice of Econometrics, 2nd edn. Wiley, Chichester (1988)zbMATHGoogle Scholar
  9. 9.
    Russell, L.W., Morgan, S.P., Chron, E.G.: Clockwork: A new movement in autonomic systems. IBM Systems Journal 42(1) (2003)Google Scholar
  10. 10.
    Ohlson, K.: Victoria’s secret knows ads, not the web. Computer World (February 1999)Google Scholar
  11. 11.
    Hewlett Packard. HP utility data center (2003), http://www.hp.com/go/hpudc
  12. 12.
    Goldszmidt, M., Palma, D., Sabata, B.: On the quantification of e-business capacity. In: Proceedings of the 3rd ACM conference on Electronic Commerce (2001)Google Scholar
  13. 13.
    Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, M.K.G., Krishnakumar, S., Pazel, D., Pershing, J., Rochwerger, B.: Oceano–SLA-based management of a computing utility. In: Proceedings of the IFIP/IEEE Symposium on Integrated Network Management (2001)Google Scholar
  14. 14.
    ProvisionSoft. ProvisionSoft Home Page (2003), http://www.provisionsoft.com
  15. 15.
    Sun Micro Systems. Sun N1 (2003), http://wwws.sun.com/software/solutions/n1
  16. 16.
    ThinkDynamics. Thinkdynamics Home Page (2003), http://www.thinkdynamics.com
  17. 17.
    Zeus. Why web technology is vital to your business. Computer World (2003)Google Scholar
  18. 18.
    Squillante, M.S., Zhang, L., Yao, D.Y.: Web traffic modeling and web server performance analysis. In: Proceedings of the 38th IEEE Conference on Decision and Control, p. 5 (1999)Google Scholar
  19. 19.
    Rolia, J., Zhu, X., Arlitt, M.: Resource access management for a utility hosting enterprise applications. In: Integrated Network Management VIII (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • E. Lassettre
    • 1
  • D. W. Coleman
    • 1
  • Y. Diao
    • 1
  • S. Froehlich
    • 1
  • J. L. Hellerstein
    • 1
  • L. Hsiung
    • 1
  • T. Mummert
    • 1
  • M. Raghavachari
    • 1
  • G. Parker
    • 1
  • L. Russell
    • 1
  • M. Surendra
    • 1
  • V. Tseng
    • 1
  • N. Wadia
    • 1
  • P. Ye
    • 1
  1. 1.IBM Corporation 

Personalised recommendations