Stannous Chloride in the Preparation of 99mTc Pharmaceuticals

  • H. Spies
  • H. -J. Pietzsch


Human Serum Albumin Stannous Chloride Stannic Oxide Diethylene Triamine Pentaacetate Stannous Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberto R, Abram U (2003) 99mTc: labeling chemistry and labeled compounds. In: Vertés A, Nagy S, Klenscár Z (eds) Radiochemistry and radiopharmaceutical chemistry in life science, handbook of nuclear chemistry, vol. 4. Kluwer, Dordrecht, pp 211–256Google Scholar
  2. Alvarez J (1975) Radiopharmaceuticals prepared with stannous chloride. J Radioanal Chem 27:475–482CrossRefGoogle Scholar
  3. Banerjee T, Singh AK, Sharma RK, Maitra AN (2005) Labelling efficiency and biodistribution of technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles. Int J Pharm 289:189–195PubMedCrossRefGoogle Scholar
  4. Benjamin PP (1969) A rapid and efficient method of preparing 99mTc-human serum albumin: its clinical applications. Int J Appl Radiat Isot 20:187–194PubMedCrossRefGoogle Scholar
  5. Benjamin PP, Rejali A, Friedell H (1970) Electrolytic complexation of 99mTc at constant current: its application in nuclear medicine. J Nucl Med 11:147–154PubMedGoogle Scholar
  6. Clarke MJ, Podbielski L (1987) Medical diagnostic imaging with complexes of 99mTc. Coord Chem Rev 78:253–331CrossRefGoogle Scholar
  7. Deutsch ME, Redmond ML (1972) Unitary freeze-dried kits for preparation of technetium-labeled human serum albumin. J Nucl Med 13(Abstr):426–427Google Scholar
  8. Deutsch E, Elder RC, Lange BA, Vaal MJ, Lay DG (1976) Structural characterization of a bridged 99Tc-Sn-dimethylglyoxime complex — implications for chemistry of 99mTc-radiopharmaceuticals prepared by Sn(II) reduction of pertechnetate. Proc Natl Acad Sci USA 73:4289CrossRefGoogle Scholar
  9. Deutsch E, Libson K, Becker CB (1980) Preparation and biological distribution of technetium diphosphonate radiotracers synthesized without stannous ion. J Nucl Med 21:859–866PubMedGoogle Scholar
  10. Deutsch E, Glavan KA, Sodd VJ (1981) Cationic 99mTc complexes as potential myocardial imaging agents. J Nucl Med 22:897–907PubMedGoogle Scholar
  11. Donaldson JD, Moser W (1960) Pure tin(II) sulfate. J Chem Soc 4000–4003Google Scholar
  12. Dreyer R, Münze R (1969) Markierung von Serumalbumin mit 99mTechnetium [in German]. Wiss Z Karl Marx Univ Leipzig, Math-Naturwiss R 18:629–633Google Scholar
  13. Dworkin HJ, Gutkowski RF (1971) Rapid closed system production of 99mTc-albumin using electrolysis. J Nucl Med 12:562–565PubMedGoogle Scholar
  14. Eckelman WC, Richards P (1970) Instant 99mTc-DTPA. J Nucl Med 11:761–762PubMedGoogle Scholar
  15. Eckelman WC, Meinken G, Richards P (1971a) Chemical state of 99mTc in biomedical products. J Nucl Med 12:596–600PubMedGoogle Scholar
  16. Eckelman WC, Meinken G, Richards P (1971b) 99mTc-human serum albumin. J Nucl Med 12:707–710PubMedGoogle Scholar
  17. Eckelman WC, Richards P (1972) Analytical pitfalls with 99mTc-labelled compounds. J Nucl Med 13:202–204PubMedGoogle Scholar
  18. Eckelman WC, Steigman J (1991) Direct labelling with 99mTc. Nucl Med Biol 18:3–7Google Scholar
  19. Fischer HW (1957) Colloidal stannic oxide — animal studies on a new hepatolienographic agent. Radiology 68:488–498PubMedGoogle Scholar
  20. Gil MC, Palma T, Radicella R (1976) Electrolytical labelling of 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 27:69PubMedCrossRefGoogle Scholar
  21. Greenland WEP, Fogelman I, Blower PJ (2002) Direct labelling via simultaneous reduction of pertechnetate and a disulfide bond. In: Nicolini M, Mazzi U (eds) Tc, Re and other metals in chemistry and nuclear medicine 6. SG Editoriali, Padova, Italy, pp 495–498Google Scholar
  22. Hoffmann I, May K, Noll B (1990) Determination of tin(II) concentration in ROTOP MAG-3 kit. Zentralinstitut Kernforschung Rossendorf, Dresden, Annual Report ZfK 711:46–47Google Scholar
  23. Kalincak M, Machan V, Vilcek S (1982) 99mTc-labelled compounds prepared with Ti(III) as reducing agent. Isotopenpraxis 18:334–338Google Scholar
  24. Kremer C, Leon A, Gambino D (1989) Solid-phase reduction of (TcC4)-99mTc with zinc — a method for the preparation of difficult 99mTc compexes. J Labelled Comp Radiopharm 27:1331–1340CrossRefGoogle Scholar
  25. Lejeune R, Thunus J, Thunus L (1996) Polarographic determination of (Sn(II) in samples containing Sn(IV) such as in technetium-99m radiopharmaceutical kits. Anal Chim Acta 332:67–71CrossRefGoogle Scholar
  26. Lin SM, Winchell HS, Shipley BA (1971) Use of Fe(II) or Sn(II) alone for technetium labelling of albumin. J Nucl Med 12:204–211PubMedGoogle Scholar
  27. Münze R (1980) Electrochemical investigation on the reduction of 99TcO4 with tin(II) in the presence of citrate. Radiochem Radioanal Lett 43:219–224Google Scholar
  28. Nakayama M, Terahara T, Wada M, Ginoza Y, Harada K, Sugii A, Nakayama H (1995) Insoluble macromolecular Sn(II) complex for the 99mTc labelling of protein-bearing mercapto groups. In: Nicolini M, Mazzi U (eds) Tc, Re and other metals in chemistry and nuclear medicine 4. SG Editoriali, Padova, Italy, pp 299–320Google Scholar
  29. Noronha OPD (1978) Time-dependent characteristics on Sn-complexes for preparing 99mTc-labelled radiopharmaceuticals and their bioavailabilities — a review. Nuklearmedizin 17:110–125PubMedGoogle Scholar
  30. Novotnik DP (1990) Physico-chemical concepts in the preparation of technetium radiopharmaceuticals. In: Sampson CB (ed) Textbook of radiopharmacy: theory and practice. Gordon and Breach, Philadelphia, pp 29–49Google Scholar
  31. Persson RBR, Liden K (1969) 99mTc-labelled human serum albumin — a study of labelling procedure. Int J Appl Radiat Isot 20:241PubMedCrossRefGoogle Scholar
  32. Rakias F, Zolle I (1997) Stannous ion determination: importance and relevance for radiopharmaceutical kits. In: Bergmann H, Kroiss A, Sinzinger H (eds) Radioactive isotope in clinical medicine and research, vol. 22. Birkhauser, Basel, pp 401–409Google Scholar
  33. Rhodes BA (1991) Direct labelling of proteins with 99mTc. Nucl Med Biol 18:667–676Google Scholar
  34. Schwochau K (2000) Technetium — chemistry and radiopharmaceutical applications. Wiley, New York, p 44Google Scholar
  35. Smith JE, Byrne EF, Cotton FA (1978) Thiol complex of technetium pertinent to radiopharmaceutical use of 99mTc. J Amer Chem Soc 100:5571–5572CrossRefGoogle Scholar
  36. Spies H, Johannsen B, Münze R, Unverferth K (1978) Die Reduktion von Pertechnetat mit Cystein [in German]. Z Anorg Allg Chem 447:215–220CrossRefGoogle Scholar
  37. Srivastava SC, Meinken G, Smith TD, Richards P (1977) Problems associated with stannous 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 28:83–95PubMedCrossRefGoogle Scholar
  38. Srivastava SC, Richards P (1983) Technetium-labelled compounds. In: Rayudu GVS (ed) Radiotracers for medical applications, CRC series in radiotracers in bioliology and medicine. CRC Press, Boca Raton, pp 107–185Google Scholar
  39. Steigman J, Eckelman WC, Meinken G, Isaacs HS, Richards P (1974) The chemistry of technetium labeling of radiopharmaceuticals by electrolysis. J Nucl Med 15:75–80PubMedGoogle Scholar
  40. Steigman J, Richards P (1974) The chemistry of technetium. Sem Nucl Med 4:269–279CrossRefGoogle Scholar
  41. Steigman J, Meinken G, Richards P (1975) The reduction of pertechnetate-99 by stannous chloride-I. The stoichiometry of the reaction in HC1, in a citrate buffer and in a DTPA buffer. Int J Appl Radiat Isot 26:601–609CrossRefGoogle Scholar
  42. Stern HS, Zolle I, McAfee JG (1965) Preparation of 99mTc-labelled serum albumin. Int J Appl Radiat Isot 16:283–288PubMedCrossRefGoogle Scholar
  43. Subramanian G, McAfee JG (1970) Stannous oxide colloid labeled with 99mTc or 113mIn for bone marrow imaging. J Nucl Med 11:365–366Google Scholar
  44. Syhre R, Spies H, Johannsen B (1976) Die Organverteilung von 99mTc(Sn)-Hydroxidkolloid in der Ratte in Abhängigkeit vom Präparations-pH [in German]. Radiobiol Radiother 17:747–750Google Scholar
  45. Thomas RW, Estes GW, Elder RC (1979) Technetium radiopharmaceutical development. I. Synthesis, characterization and structure of dichloro[hydrotris(l-pyrazolyl)borate]oxo-technetium(V). J Amer Chem Soc 101:4581CrossRefGoogle Scholar
  46. Vanderheyden JL, Ketring AR, Libson K, Heeg MJ, Roecker L, Motz P, Whittle R, Elder RC, Deutsch E (1984) Synthesis and characterization of cationic technetium complexes of l,2-bis(dimethylphosphino)ethane (DMPE) — structure determinations of trans-[Tc-(DMPE)2(OH)(O)](F3CSO3)2, trans-[Tc-III(DMPE)2CL2]F3CSO3 and [Tc-I(DMPE)3]+ using x-ray-diffraction, EXAFS and 99Tc NMR. Inorg Chem 23:3184–3191CrossRefGoogle Scholar
  47. Vilcek S, Kalincak M, Machan V (1982) Analysis of 99mTc-labelled compounds using Sorb-Gel method. Radiochem Radioanal Lett 52:55–64Google Scholar
  48. Vilcek S, Machan V, Kalincak M (1984) 99mTc-labelled compounds prepared with molybdenum(III) as reducing agent. Int J Appl Radiat and Isot 35:228–230CrossRefGoogle Scholar
  49. Vilcek S, Kalincak M, Machan V (1985) 99mTc-labelled compounds prepared with tungsten(III) as the reducing agent. J Radioanal Nucl Chem 88:359–367CrossRefGoogle Scholar
  50. Wardell JL (1994) Tin: inorganic chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry, vol. 8. Wiley, New York, pp 4159–4197Google Scholar
  51. Yokoyama A, Kominami G, Harada S (1975) The role of ascorbic acid with the ferric ion in labelling human serum albumin with 99mTc. Int J Appl Radiat Isot 26:291–299PubMedCrossRefGoogle Scholar
  52. Zolle I, Oniciu L, Höfer R (1973) Contribution to the study of the mechanism of labelling human serum albumin (HSA) with Technetium-99m. Int J Appl Radiat Isot 24:621–626PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • H. Spies
    • 1
  • H. -J. Pietzsch
    • 1
  1. 1.Research Centre RossendorfInstitute of RadiopharmacyDresdenGermany

Personalised recommendations