Skip to main content

Inferring Cis-region Hierarchies from Patterns in Time-Course Gene Expression Data

  • Conference paper
Regulatory Genomics (RRG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3318))

Included in the following conference series:

  • 264 Accesses

Abstract

Resolving the co-regulation relationships between genes is a major step toward understanding the underlying topology and dynamics of gene networks. Although co-expression of genes does not directly imply their co-regulation, model-based approaches coupled with the availability of large-scale gene expression data can help associate expression patterns with features in their cis-regions. Inspired by studies of transcriptional regulation in sea-urchin, here we report on preliminary validation of the following simple model for transcriptional regulation in yeast: the same Cis-Regulatory Modules (CRMs) in the cis-regions of different genes give rise to very similar functional events in the time-course expression profiles of those genes. We use a modified version of a prior algorithm for decomposing time-course gene expression patterns into functional events. To capture and reason about shared CRMs we introduce an order relationship, or a Regulation Hierarchy on the genes. When tested on actual time-course gene expression data of yeast preliminary results indicate 50% – 71% matches, of high confidence, between our derived and known cis-region regulation hierarchies. This hierarchy structure yields practical predictions when used with other type of genomic data, e.g. location of TF-DNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genomewide expression patterns. Proceedings of the National Academy of Science 85, 14863–14868 (1998)

    Article  Google Scholar 

  2. Davidson, E.: Genomic Regulatory Systems. Academic Press, London (2001)

    Google Scholar 

  3. Davidson, E., et al.: A genomic regulatory network for development. Science 295, 1669–1678 (2002)

    Article  Google Scholar 

  4. Filkov, V., et al.: Analysis techniques for microarray time-series data. Journal of Computational Biology 9, 317–330 (2002)

    Article  Google Scholar 

  5. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

  6. Lee, T., et al.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  7. Pilpel, Y., Sudarsanam, P., Church, G.: Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153–159 (2001)

    Article  Google Scholar 

  8. Lapidot, M., Pilpel, Y.: Comprehensive quantitative analyses of the effects of promoter sequence elements on mrna transcription. Nucleic Acids Research 31, 3824–3828 (2003)

    Article  Google Scholar 

  9. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: Identifying regulatory modules and their condition specific regulators from gene expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  10. Holter, N., et al.: Fundamental patterns underlying gene expression profiles: simplicity from complexity. PNAS 97, 8409–8414 (2000)

    Article  Google Scholar 

  11. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)

    Article  Google Scholar 

  12. Alon, U.: Internationl Conference on Systems Biology (2003) (Invited Talk)

    Google Scholar 

  13. Dolinski, K., et al.: Saccharomyces genome database (2004), http://www.yeastgenome.org/

  14. Zhu, G., et al.: Two-yeast forkhead genes regulate the cell-cycle and pseudohyphal growth. Nature 406, 90–94 (2000)

    Article  Google Scholar 

  15. Loy, B., et al.: Ndd1, a high-dosage suppressor of cdc28-in. sacc. cerevisiae. Mol. Cell. Biol. (1999)

    Google Scholar 

  16. Cox, K., Pinchak, A., Cooper, T.: Genome-wide transcriptional analysis in s. cerevisiae by mini-array membrane hybridization. Yeast 15, 703–713 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filkov, V., Shah, N. (2005). Inferring Cis-region Hierarchies from Patterns in Time-Course Gene Expression Data. In: Eskin, E., Workman, C. (eds) Regulatory Genomics. RRG 2004. Lecture Notes in Computer Science(), vol 3318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32280-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32280-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24456-1

  • Online ISBN: 978-3-540-32280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics