Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. M. Meyer: The forecast for GaAs integrated circuits. Compound Semiconductors 1(2) (1995), 21.

    Google Scholar 

  2. M. S. Shur, Y. S. Park: ISCS-22 22nd International Symposium on Compound Semiconductors. III-Vs Review 8(6) (1995), 24.

    Google Scholar 

  3. D. Jäger:Optoelektronik. In: Festkörperforschung für die Informationstechnik, 21. IFF-Ferienkurs, Jülich (1990), 15.1.

    Google Scholar 

  4. P. M. Smith: IEEE Microwave and Guided Wave Letters 5(7) (1995), 230.

    Google Scholar 

  5. M. Young:AXT — American Xtal Technology. III-Vs Review 8(6) (1995), 20.

    Google Scholar 

  6. R. Z. Bachrach, B. S. Krusor: Morphological defects arising during MBE growth of GaAs. J. Vac. Sci. Technol. 18 (1981), 756 und Referenzen darin.

    Google Scholar 

  7. C. L. Reynolds, T. Hong Ha Vuong, L. J. Peticolas: Impact of interface impurities on heterostructure field-effect transistors. IEEE Transactions on Electron Devices 39 (1992), 2459.

    Google Scholar 

  8. A. Kleinwechter (Freiberger Compound Materials GmbH): Private Mitteilung.

    Google Scholar 

  9. H. Shibaya, H. Kondo, K. Tomizawa: Surface contamination level of GaAs wafers treated with solutions of organic base measured by TXRF. Mat. Res. Soc. Symp. Proc. 259 (1992), 329.

    Google Scholar 

  10. G. Becker: Mikroskopische und oberflächenanalytische Untersuchung der Haze-Bildung auf GaAs-Wafern und ihrer Ursachen. Diplomarbeit, Münster (1994).

    Google Scholar 

  11. H. Welker: Über neue halbleitende Verbindungen. Z. Naturforschg. 7a (1952), 744.

    Google Scholar 

  12. O. G. Folberth: Überblick über einige physikalisch-chemische Eigenschaften der III-V-Verbindungen. Halbleiterprobleme V, F. Sauter, Vieweg, Braunschweig (1960).

    Google Scholar 

  13. W. Heinle: Principles of a phenomenological theory of Gunn-effect domain dynamics. Solid State Electronics 11 (1968), 583.

    Google Scholar 

  14. C. S. Wang, B. M. Klein: First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe I. Self-consistent energy bands, charge densities, and effective masses. Phys. Rev. B24 (1981), 3393.

    Google Scholar 

  15. P. H. Dederichs: Grundlagen der Bändertheorie. Festkörperforschung für die Informationstechnik, 21. IFF-Ferienkurs, Jülich (1990), 4.1.

    Google Scholar 

  16. F. Schröder: Dünnschichtanalyse an GaAs-Halbleitern mit TDXPS, MXPS und TOF-SIMS. Diplomarbeit, Münster (1991).

    Google Scholar 

  17. W. Storm: XPS- und TOF-SIMS-Untersuchungen der Stöchiometrie und des Oxidwachstums von HF-behandelten GaAs(l00)-Oberflächen. Dissertation, Münster (1993).

    Google Scholar 

  18. H. Reichl: Halbleitersensoren. Kontakt & Studium: Meß- und Prüftechnik, Band 251 (1989), 3.

    Google Scholar 

  19. C. Kittel: Einführung in die Physik. 10. Auflage, R. Oldenbourg Verlag, München, Wien (1993).

    Google Scholar 

  20. O.-A. Neumüller: Römpps Chemie-Lexikon. 8. Auflage, Franckh’sche Verlagshandlung, Stuttgart (1987).

    Google Scholar 

  21. H. Wenzl: Gallium-Arsenid: Phasenbeziehungen und Eigenschaften. Festkörperforschung für die Informationstechnik, 21. IFF-Ferienkurs, Jülich (1990), 20.1.

    Google Scholar 

  22. M. L. Cohen, J. R. Chelikowsky: Electronic structure and optical properties of semiconductors. Springer Series in Solid State, Vol. 75, Springer Verlag (1988).

    Google Scholar 

  23. J. C. Phillips: Bonds and bands in semiconductors.Materials Science and Technology, Academic Press (1973).

    Google Scholar 

  24. P. C. Schmidt, K. G. Weil: Atom- und Molekülbau. Georg Thieme Verlag Stuttgart, New York (1982).

    Google Scholar 

  25. W. Uelhoff: Die Züchtung möglichst perfekter Kristalle. Sonderdruck aus dem Jahresbericht der KFA Jülich GmbH (1983/84).

    Google Scholar 

  26. W. Uelhoff: The physics of Czochralski crystal growth. Festkörperprobleme 27 (1987), 241.

    Google Scholar 

  27. K. Karagiannakos: Entwicklung einer GaAs-Einkristallziehapparatur nach dem Heißwand-Czochralski Verfahren. Berichte des Forschungszentrums Jülich 2621 (1992).

    Google Scholar 

  28. D. T. J. Hurle, G. C. Joyce, M. Ghassempoory, A. B. Crowley, E. J. Stern: The dynamics of Czochralski growth. Journal of Crystal Growth 100 (1990), 11.

    Google Scholar 

  29. Y. T. Chan, H. L. Grubin: Numerical simulation of magnetic liquid-encapsulated Czochralski growth of GaAs. J. Appl. Phys. 70 (1991), 7097.

    Google Scholar 

  30. H. Rüfer: Kristallzucht des Galliumarsenid. Festkörperforschung für die Informationstechnik, 21. IFF-Ferienkurs, Jülich (1990), 21.1.

    Google Scholar 

  31. R. Naeven: GaAs-Einkristallzucht mit totaler Flüssigeinkapselung im vertikalen Bridgeman-Verfahren. Berichte des Forschungszentrums Jülich 2800 (1993).

    Google Scholar 

  32. D. Gräf, M. Grundner, D. Lüdecke, R. Schulz: Reaction of hydrofluoric acid and water with the GaAs (100) surface. J. Vac. Sci. Technol. A8 (1990), 1955.

    Google Scholar 

  33. V. I. Belyi, N. P. Sysoeva, B. A. Kolesov: Removal of elemental arsenic by water from the GaAs surface. Vacuum 41 (1990), 821.

    Google Scholar 

  34. Y. Hirota, K. Sugii, Y. Homma: Reflection high-energy electron diffraction observation of GaAs surface-prepared ultrasonic running de-ionized water treatment. Electrochem. Soc. 138 (1991), 799.

    Google Scholar 

  35. A. J. SpringThorpe, S. J. Ingrey, B. Emmerstorfer, P. Mandeville, W. T. Moore: Measurement of GaAs surface oxide desorption temperatures. Appl. Phys. Lett. 50 (1987), 77.

    Google Scholar 

  36. EPI MBE Products Group (1290 Hammond Road, Saint Paul, Minnesota, USA): 1995 Product Guide — Components for MBE, 93.

    Google Scholar 

  37. M. A. Herman, H. Sitter: Molecular beam epitaxy. Springer Ser. Mat. Sci. 7, Springer, Berlin (1989).

    Google Scholar 

  38. K. Ploog: Molekularstrahl-Epitaxie von III-V Halbleitern. 21. IFF-Ferienkurs, Festköperforschung für die Informationstechnik, KFA Jülich GmbH (1990), 23.1.

    Google Scholar 

  39. H. Sitter, M. A. Herman: Molekülstrahlepitaxie. Vakuum in der Praxis 4 (1990), 262.

    Google Scholar 

  40. MBE in Space. Compound Semiconductor 1(2) (1995), 8.

    Google Scholar 

  41. Space Shuttle Experiments yields four EPI samples. Compound Semiconductor 1(3) (1995), 13.

    Google Scholar 

  42. H. Lüth: Depositionsmethoden für Halbleiterschichtstrukturen. 21. IFF-Ferienkurs, Festköperforschung für die Informationstechnik, KFA Jülich GmbH (1990), 24.1.

    Google Scholar 

  43. H. Lüth: Metalorganic Molecular Beam Epitaxy (MOMBE). Proc. ESSDERC 1986, Cambridge, GB, Inst. Phys. Conf. Ser. 82 (1986), 135.

    Google Scholar 

  44. M. Grasserbauer, H. J. Dudek, M. F. Ebel: Angewandte Oberflächenanalyse mit SIMS, AES und XPS. Springer, Berlin (1986), 223.

    Google Scholar 

  45. M. Grasserbauer, H. W. Werner: Analysis of microelectronic materials and devices. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore (1991), 111.

    Google Scholar 

  46. K. Siegbahn: Electron spectroscopy for atoms, molecules, and condensed matter. Rev. Mod. Phys. 54 (1982), 709.

    Google Scholar 

  47. H. Hertz: Über den Einfluß des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. Chem. 31, (1887), 983.

    Google Scholar 

  48. W. Hallwachs: Über den Einfluß des Lichtes auf electro statisch geladene Körper. Ann. Phys. Chem 33 (1888), 301.

    Google Scholar 

  49. A. Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17 (1905), 132.

    Google Scholar 

  50. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, B. Lindberg: ESCA — Atomic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist and Wiksells, Uppsala (1967).

    Google Scholar 

  51. P. Auger: Sur les rayons ß secondaires produits dans un gaz par des rayons X. C. R. Acad. Sci. (Paris) 177(3) (1923), 169.

    Google Scholar 

  52. P. Auger: The Auger effect. Surf. Sci. 48 (1975), 1.

    Google Scholar 

  53. A. Joshi, L. E. Davis, P. W. Palmberg: Auger Electron Spectroscopy. In: Methods of Surface Analysis. Hrsg.: A. W. Czanderna — Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company 1975.

    Google Scholar 

  54. D. A. Shirley: High-resolution X-ray photoemission spectrum of the valence band of gold. Phys. Rev. B5 (1972), 4709.

    Google Scholar 

  55. S. Tougaard, I. Chorkendorff: Differential inelastic electron scattering cross sections from experimental electron-energy-loss spectra: Application to background removal in electron spectroscopy. Phys. Rev. B35 (1987), 6570.

    Google Scholar 

  56. B.-C. Schwede: Tiefenprofilrekonstruktion mit XPS: Methodenvergleich und Analyse ausgewählter Schichtsysteme. Diplomarbeit, Münster (1994).

    Google Scholar 

  57. D. Briggs, M. P. Seah: Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Wiley, Chichester (1983).

    Google Scholar 

  58. V. I. Nefedov: X-Ray Photoelectron Spectroscopy of Solid Surfaces. VSP, Utrecht (1988).

    Google Scholar 

  59. J. H. Scofield: Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. El. Spectrosc. Rel. Phenom. 8 (1976), 129.

    Google Scholar 

  60. S. M. Goldberg, C. S. Fadley, S. Kono: Photoionization cross-sections for atomic orbitals with random and fixed spatial orientation. J. El. Spectrosc. Rel. Phenom. 21 (1981), 285.

    Google Scholar 

  61. D. R. Penn: Quantitative chemical analysis by ESCA. J. El. Spectrosc. Rel. Phenom. 9 (1976), 29.

    Google Scholar 

  62. M. P. Seah, W. A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1 (1979), 2.

    Google Scholar 

  63. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. F. Muilenberg: Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics Inc., Eden Prairie (1976), 22.

    Google Scholar 

  64. C. S. Fadley: Angle-resolved X-ray photoelectron spectroscopy. Progr. Surf. Sci. 16 (1984), 275.

    Google Scholar 

  65. J. Cazaux: Surface and Interface Characterization by Electron Optical Methods. NATO ASI Series B: Physics Bd. 1991 (Hrsg.: A. Howie, U. Valdre), Plenum Publishing Corporation, New York (1988), 89.

    Google Scholar 

  66. T. D. Bussing, P. H. Holloway: Deconvolution of concentration depth profiles from angle resolved X-ray photoelectron spectroscopy data. J. Vac. Sci. Technol. A3 (1985), 1973.

    Google Scholar 

  67. . P. W. Jahn, F. M. Petrat, D. Wolany, M. Deimel, T. Gantenfort, C. Schmerling, H. Wensing, L. Wiedmann, A. Benninghoven: A combined instrument for the on-line investigation of plasma deposited or etched surfaces by monochromatized X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. J. Vac. Sci. Technol. A12 (1994), 671.

    Google Scholar 

  68. W. P. Poschenrieder: Multiple-focussing time of flight mass spectrometers. I. TOFMS with equal momentum acceleration. Int. J. Mass Spectrom. Ion Phys. 9 (1972), 357.

    Google Scholar 

  69. V. I. Karataev, B. A. Mamyrin, D. V. Shmikk: Sov. Phys. Tech. Phys. 16 (1972), 1177.

    Google Scholar 

  70. B. A. Mamyrin, V. I. Karataev, B. V. Shmikk, V. A. Zagulin: The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov. Phys. JETP 37 (1973), 45.

    Google Scholar 

  71. H. Düsterhöft: Sekundärionen-Massenspektrometrie. In: Festkörperanalyse mit Elektronen, Ionen und Röntgenstrahlen. Hrsg.: H. Bethge, J. Heydenreich, K. H. Krebs, H. G. Schneider. Berlin: Deutscher Verlag der Wissenschaften (1980), 373.

    Google Scholar 

  72. K. Wittmaack: Aspects of quantitative secondary ion mass spectrometry. Nucl. Instrum. Meth. 168 (1980), 343.

    Google Scholar 

  73. H. W. Werner: Introduction to secondary ion mass spectrometry (SIMS). In: Electron and Ion Spectroscopy of Solids. New York, London: Plenum Press (1978), 324.

    Google Scholar 

  74. P. Steffens, E. Niehuis, T. Friese, A. Benninghoven: Design and performance of a new time-of-flight instrument for SIMS. In: Ion Formation from Organic Solids (IFOS II), Springer Series in Chemical Physics, Ed. A. Benninghoven (Springer Verlag Berlin 1983), Vol. 25, 111.

    Google Scholar 

  75. A. Benninghoven, F. G. Rüdenauer, H. W. Werner: Secondary Ion Mass Spectrometry. In Reihe „Chemical Analysis Vol. 86“, John Wiley & Sons, New York 1987.

    Google Scholar 

  76. B. T. Chait und K. G. Standing: A time-of-flight mass spectrometer for measurement of secondary ion mass spectra. Int. J. Mass Spectrom. Ion Phys. 40 (1981), 185.

    Google Scholar 

  77. A. Benninghoven, P. Steffens, E. Niehuis, T. Friese: Application of a new time-of-flight SIMS. präsentiert auf der 31. Conference on Mass Spectrometry and Allied Topics, Boston, Massachusetts, May 8–13 (1983).

    Google Scholar 

  78. E. Niehuis, T. Heller, H. Feld, A. Benninghoven: Design and performance of a reflectron based time-of-flight secondary ion mass spectrometer with electrodynamic primary ion mass separation. J. Vac. Sci. Technol. A5 (1987), 1243.

    Google Scholar 

  79. J. J. Thomson: Rays of positive electricity. Phil. Mag. 20 (1910), 752.

    Google Scholar 

  80. F. L. Arnot: A new process of negative ion formation. Nature 138 (1936), 162.

    Google Scholar 

  81. P. Sigmund: Theory of sputtering. I. Sputtering yield of amorphous and poly crystalline targets. Phys. Rev. 184 (1969), 383.

    Google Scholar 

  82. A. Benninghoven, F. G. Rüdenauer, H. W. Werner: Ref. 75, S. 11.

    Google Scholar 

  83. C. A. Andersen und J. R. Hinthorne: Thermodynamic approach to the quantitative interpretation of sputtered ion mass spectra. Anal. Chem. 45 (1973), 1421.

    Google Scholar 

  84. M. L. Yu: Chemical enhancement effects in SIMS analysis. Nucl. Instrum. Meth. Phys. Res. B15 (1986), 151.

    Google Scholar 

  85. P. Williams: On mechanisms of sputtered ion emission. Appl. Surf. Sci. 13 (1982), 241.

    Google Scholar 

  86. A. Benninghoven, F. G. Rüdenauer und H. W. Werner: Secondary Ion Mass Spectrometry SIMS V. In Reihe „Springer Series in Chemical Physics Vol. 44“, Springer-Verlag, Berlin 1986.

    Google Scholar 

  87. A. Benninghoven: Analysis of submonolayers on silver by negative secondary ion emission. Phys. Stat. Sol. 34 (1969), K169–171.

    Google Scholar 

  88. A. Benninghoven: Die Analyse monomolekularer Festkörperoberflächenschichten mit Hilfe der Sekundärionenemission. Z.Physik 230 (1970), 403.

    Google Scholar 

  89. A. Benninghoven, F. G. Rüdenauer, H. W. Werner: Ref. 75, S. 282.

    Google Scholar 

  90. H. W. Werner, N. Warmoltz: The influence of selective sputtering on surface composition. Surf. Sci. 57 (1976), 706.

    Google Scholar 

  91. A. Benninghoven, F. G. Rüdenauer, H. W. Werner: Ref. 75, S. 186.

    Google Scholar 

  92. . C. Plog, L. Wiedmann und A. Benninghoven: Empirical formula for the calculation of secondary ion yields from oxidized metal surfaces and metal oxides. Surf. Sci. 67 (1977), 565.

    Google Scholar 

  93. A. Benninghoven und L. Wiedmann: Quantitative Bestimmung der Sekundärionenausbeuten sauerstoffbedeckter Metalle. Forschungsberichte des Landes Nordrhein-Westfalen 2784 (1978), 1.

    Google Scholar 

  94. S. Hofmann: Quantitative depth profiling in surface analysis: A review. Surf. Interface Anal. 2 (1980), 148.

    Google Scholar 

  95. M. P. Seah: Surf. Interface Anal. 2 (1980), 222.

    Google Scholar 

  96. H. H. Andersen: The depth resolution of sputter profiling. Appl. Phys. 18 (1979), 131.

    Google Scholar 

  97. D. Lipinsky: Sekundärionen- und Neutralteilchenmassenspektrometrie an oxidischen Dünnschichtsystemen. Deutscher Universitäts-Verlag GmbH, Wiesbaden (1995).

    Google Scholar 

  98. D. Pavlidis: Current status of heterojunction bipolar and high-electron mobility transistor technologies. Microelectronic Engineering 19 (1992), 305.

    Google Scholar 

  99. M. Kasashima, Y. Arai, H. I. Fujishiro, H. Nakamura, S. Nishi: Pseudomorphic inverted HEMT suitable to low supplied voltage application. IEEE Transactions on Microwave Theory and Techniques 40 (1992), 2381.

    Google Scholar 

  100. M. Maier, P. Hiesinger, K. Kohler, W. Jantz: Influence of Si segregation on the two-dimensional electron gas mobility of inverted HEMT structures. Vacuum 42 (1991), 745.

    Google Scholar 

  101. M. van Hove: Scaling behavior of delta-doped AlGaAs/InGaAs electron mobility transistors with gatelength down to 60 nm and source-drain gates down to 230 nm. J. Vac. Sci. Technol. B11 (1993), 1203.

    Google Scholar 

  102. A. Kana’ah, P. I. Rockett, J. S. Roberts, M. A. Pate, and M. V. Woodward: Influence of silicon nitride cap on the thermal stability of strained Al 0.32 Ga 0.68 As/In 0.1 Ga 0.9 AS high electron mobility structures grown by MCVD. J. Vac. Sci. Technol. B10 (1992), 2488.

    Google Scholar 

  103. F. Schröder-Oeynhausen: Surface analysis of IHEMT test structures on GaAs with SIMS and other techniques. Abschlußbericht zum Forschungsaufenthalt 1993, Ford Motor Company, Dearborn, USA (1995).

    Google Scholar 

  104. A. Benninghoven: Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Angew. Chemie Int. Ed. Engl. 33 (1994), 1023.

    Google Scholar 

  105. A. Benninghoven, B. Hagenhoff, E. Niehuis: Surface mass spectrometry: Probing real-world samples. Anal. Chem. 65 (1993), 630A.

    Google Scholar 

  106. E. Niehuis: Entwicklung und Anwendung von hochauflösenden Flugzeitspektrometern für die statische Sekundärionen-Massenspektrometrie. Dissertation, Münster (1988).

    Google Scholar 

  107. T. Stephan, J. Zehnpfenning, A. Benninghoven: Correction of dead time effects in time-of-flight mass spectrometry. J. Vac. Sci. Technol. A12 (1994), 405.

    Google Scholar 

  108. J. Schwieters, H.-G. Cramer, T. Heller, U. Jürgens, E. Niehuis, J. Zehnpfenning, A. Benninghoven: High mass resolution surface imaging with a time-of-flight secondary ion mass spectroscopy scanning microprobe. J. Vac. Sci. Technol. A9, (1991), 2864.

    Google Scholar 

  109. J. Knoth, H. Schwenke, U. Weisbrod: Total reflection X-ray fluorescence spectrometry for surface analysis. Spectrochim. Acta 44B (1989), 477.

    Google Scholar 

  110. R. Klockenkämper, J. Knoth, A. Prange, H. Schwenke: Total-reflection X-ray fluorescence spectroscopy. Anal. Chem. 64 (1992), 1115.

    Google Scholar 

  111. A. Prange: Total reflection X-ray spectrometry: method and applications. Spectrochim. Acta 44B (1989), 437.

    Google Scholar 

  112. R. Greef: Ellipsometry — A versatile tool in surface analysis. In: Surface Analysis Techniques and Applications, W. Neagle, D. R. Randell (Eds.), The Royal Society of Chemistry (1990), 27.

    Google Scholar 

  113. W. Göpel, C. Ziegler: Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie. B. G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig (1994), 451.

    Google Scholar 

  114. R. M. A. Azzam, N. M. Bashara: Ellipsometry and polarized light. North-Holland, Amsterdam (1977).

    Google Scholar 

  115. R. W. Collins, Y. Kim: Ellipsometry for thin-film and surface analysis. Anal. Chem. 62 (1990), 887.

    Google Scholar 

  116. U. Jürgens, H.-G. Cramer, T. Heller, E. Niehuis, Zhiyuan, A. Benninghoven: Ultra trace detection of metal contamination on wafer surfaces. Secondary Ion Mass Spectrometry SIMS VIII, A. Benninghoven, K. T. F. Janssen, J. Tümpner, H. W. Werner (Eds), Wiley & Sons (1992), 277.

    Google Scholar 

  117. B. Hagenhoff, R. Kock, M. Deimel, A. Benninghoven: Quantification of molecular SIMS by internal standards. Secondary Ion Mass Spectrometry SIMS VIII, A. Benninghoven, K. T. F. Janssen, J. Tiimpner, H. W. Werner (Eds), Wiley & Sons (1992), 831.

    Google Scholar 

  118. A. Schnieders: Einsatz der Flugzeitmassenspektrometrie zerstäubter und nichtresonant nachionisierter Neutralteilchen in der Oberflächenanalyse von Si-Wafern. Diplomarbeit, Münster (1993).

    Google Scholar 

  119. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara: Energy dependence of the ion induced sputtering yields of monoatomic solids. Atom. Data Nucl. Tab. 31 (1984), 1.

    Google Scholar 

  120. R. Behrisch: Sputtering by Particle Bombardment I. Topics in Applied Physics, Vol. 47, R. Behrisch (Ed.), Springer Verlag, Berlin (1981), 167.

    Google Scholar 

  121. J. Sosniak: Mass spectrometry of background gases in glow-discharge sputtering of tantalum thin films. J. Vac. Sci. Technol. 4 (1967), 87.

    Google Scholar 

  122. T. Tanaka, Y. Homma, H. Okamoto: Oxygen effect on secondary ion emission of impurities in GaAs. J. Vac. Sci. Technol. A6 (1988), 204.

    Google Scholar 

  123. H. Schwenke (Forschungszentrum Geesthacht GmbH): Private Mitteilung.

    Google Scholar 

  124. U. Jürgens: Oberflächenanalyse von Si-Wafern mit der Flugzeit-SIMS. Dissertation, Universität Münster (1993).

    Google Scholar 

  125. H. van der Wel, P. N. T. van Velzen, U. Jürgens, A. Benninghoven: Static time-of-flight secondary ion mass spectrometry. In: Analysis of Microelectronic Materials and Devices, M. Grasserbauer and H. W. Werner (Eds.), John Wiley & Sons (1991), 478.

    Google Scholar 

  126. H. Kaiser: Die Berechnung der Nachweisempfindlichkeit. Spectrochim. Acta 3 (1947), 40.

    Google Scholar 

  127. IUPAC, Analytical Chemistry Devision: Nomenclature, symbols, units and their usage in spectrochemical analysis — II. Data interpretation. Pure Appl. Chem. 45 (1976), 99.

    Google Scholar 

  128. A. J. Rosenberg: The oxidation of intermetallic compounds. III. The room-temperature oxidation of AIIIBVcompounds. J. Phys. Chem. Solids 14 (1960), 175.

    Google Scholar 

  129. B. Schwartz: GaAs surface chemistry — A review. CRC Critical Reviews in Solid State Sciences (1975), 609.

    Google Scholar 

  130. C. D. Thurmond, G. P. Schwartz, G. W. Kammlott, B. Schwartz: GaAs oxidation and the Ga-As-0 equilibrium phase diagram. J. Electrochem. Soc. 127 (1980), 1366.

    Google Scholar 

  131. T. Ishikawa, H. Ikoma: X-ray photoelectron spectroscopic analysis of the oxide of GaAs. Jpn. J. Appl. Phys. 31 (1992), 3981.

    Google Scholar 

  132. S. Kohiki, K. Oki, T. Ohmura, H. Tsujii, T. Onuma: Chemical state depth profile for GaAs surface. Jpn. J. Appl. Phys. 23 (1984), L15.

    Google Scholar 

  133. C. M. Demanet, M. A. Marais: A multilayer model for GaAs oxides formed at room temperature in air as deduced from an XPS analysis. Surf. Interface Anal. 7 (1985), 13.

    Google Scholar 

  134. G. Lucovsky: A chemical bonding model for the native oxides of the III-V compound semiconductors. J. Vac. Sci. Technol. 19 (1981), 456.

    Google Scholar 

  135. F. Schröder, W. Storm, M. Altebockwinkel, L. Wiedmann, A. Benninghoven: Analysis of passivating oxide and surface contaminants on GaAs (100) by temperature-dependent and angle resolved x-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. J. Vac. Sci. Technol. 10 (1992), 1291.

    Google Scholar 

  136. P. J. Grunthaner, R. P. Vasquez, F. J. Grunthaner: Chemical depth profiles of the GaAs/native oxide interface. J. Vac. Sci. Technol. 17 (1980), 1045.

    Google Scholar 

  137. G. P. Schwartz, G. J. Gualtieri, G. W. Kammlott, B. Schwartz: An X-ray photoelectron spectroscopy study of native oxides on GaAs. J. Electrochem. Soc. 126 (1979), 1737.

    Google Scholar 

  138. V. I. Belyi, T. P. Smirnova, N. F. Zakharchuk: Phase composition and structure of native oxides on AIIIBVsemiconductors. Appl. Surf. Sci. 39 (1989), 161.

    Google Scholar 

  139. B. J. Sealy, P. L. F. Hemment: Structure and composition of native oxides on GaAs. Thin Solid Films 22 (1974), 539.

    Google Scholar 

  140. M. T. Schmidt, Z. Wu, C. F. Yu, R. M. Osgood Jr.: Atomic movement during the oxidation of GaAs. Surf. Sci. 226 (1990), 199.

    Google Scholar 

  141. H. Takagi, G. Kano, I. Teramoto: A new technique for growth of thermal oxide films on GaAs. Surf. Sci. 86 (1979), 264.

    Google Scholar 

  142. C. W. Wilmsen, R. W: Kee, K. M. Geib: Initial oxidation and oxide/semiconductor interface formation on GaAs. J. Vac. Sci. Technol. 16 (1979), 143.

    Google Scholar 

  143. D. L. Rode, B. Schwartz, J. V. DiLorenzo: Electrolytic etching and electron mobility of GaAs for FETs. Solid State Electron. 17 (1974), 1119.

    Google Scholar 

  144. P. A. Breeze, H. L. Hartnagel, P. M. A. Sherwood: An investigation of anodically grown films on GaAs using XPS. J. Electrochem. Soc. 127 (1980), 454.

    Google Scholar 

  145. T. Solomun, R. McIntyre, W. Richtering, H. Genscher: Surface stoichiometric changes of n-GaAs after anodic treatment: An XPS study. Surf. Sci. 169 (1986), 414.

    Google Scholar 

  146. K. Matsushita, T. Hariu, H. Adachi, Y. Shibata: Some aspects on the mechanism of anodic oxidation of GaAs. J. Electrochem. Soc. 126 (1979), 1268.

    Google Scholar 

  147. H. Genscher, I. Wallem-Mattes: Zum Mechanismus der Auflösung von GaAs durch Oxydationsmittel. Z. Phys. Chem. 64 (1969), 187.

    Google Scholar 

  148. K. M. Geib, C. M. Wilmsen: Anodic oxide/GaAs and InP interface formation. J. Vac. Sci. Technol. 17 (1980), 952.

    Google Scholar 

  149. S. M. Spitzer, B. Schwartz, W. J. Sundburg: The anodic oxidation of GaAs in aqueous H 2 O 2 solution. J. Electrochem. Soc. 121 (1974), 92C.

    Google Scholar 

  150. J. J. Kelly, A. C. Reynders: A study of GaAs etching in Alkaline H 2 O 2 solutions. Appl. Surf. Sci. 29 (1987), 149.

    Google Scholar 

  151. R. W. Bernstein, J. K. Grepstad: XPS intensity analysis for assessment of thickness and composition of thin overlayer films: application to chemically etched GaAs (100) surfaces. Surf. Interface Anal. 14 (1989), 109.

    Google Scholar 

  152. W. Storm, D. Wolany, F. Schröder, G. Becker, B. Burkhardt, L. Wiedmann, A. Benninghoven: Analysis of stoichiometry and oxide growth of HF treated GaAs (100) by XPS and TOF-S1MS. J. Vac. Sci. Technol. 12 (1994), 147.

    Google Scholar 

  153. J. J. Kelly, J. E. A. M. van den Meerakker, P. H. L. Notten, R. P. Tijburg: Wet chemical etching of III-V semiconductors. Philips Technical Review 44 (1988), 61.

    Google Scholar 

  154. M. Pourbaix: Atlas of electrochemical equilibria in aqueous solution. Pergamon Press, New York (1966).

    Google Scholar 

  155. Z. Lu, M. T. Schmidt, R. M. Osgood Jr.: GaAs surface oxidation and deoxidation using ECR oxygen and hydrogen plasmas. J. Vac. Sci. Technol. A9 (1991), 1040.

    Google Scholar 

  156. H. Sommer, W. John, A. Meisel: New results on the starting phase of heavy oxidation of the GaAs (100) surface. Surf. Sci. 178 (1986), 179.

    Google Scholar 

  157. J. A. McClintock, R. A. Wilson, N. E. Byer: UV-ozone cleaning of GaAs for MBE. J. Vac. Sci. Technol. 20 (1981), 241.

    Google Scholar 

  158. J. R. Vig: UV/ozone cleaning of surfaces. J. Vac. Sci. Technol. A3 (1985), 1027.

    Google Scholar 

  159. S. Ingrey, W. M. Lau, N. S. McIntyre: An XPS study on ozone treated GaAs surfaces. J. Vac. Sci. Technol. A4 (1986), 984.

    Google Scholar 

  160. S. Ingrey, W. M. Lau, N. S. McIntyre, R. Sodhi: An XPS study on ozone treated InP surfaces. J. Vac. Sci. Technol. A5 (1987), 1621.

    Google Scholar 

  161. W. M. Lau, R. N. S. Sodhi, S. Jin, S. Ingrey: Changes in surface composition and Fermi level position during thermal desorption of UV/ozone formed oxides on GaAs. J. Vac. Sci. Technol. A8 (1990), 1899.

    Google Scholar 

  162. B. J. Flinn, N. S. McIntyre: Studies of the UV/ozone oxidation of GaAs using ARXPS. Surf. Interface Anal. 15 (1990), 19.

    Google Scholar 

  163. R. F. Kopf, A. P. Kinsella, C. W. Ebert: A study of the use of UV/ozone cleaning for reduction of the defect density on MBE grown GaAs wafers. J. Vac. Sci. Technol. B9 (1991), 132.

    Google Scholar 

  164. J. Bennett, J. A. Dagata: TOF-SIMS study of P 2 S 5 /(NH 4 ) 2 - and UV/ozone treated GaAs. J. Vac. Sci. Technol. A11 (1993), 2597.

    Google Scholar 

  165. G. Cossu, G. M. Ingo, G. Mattogno, G. Padeletti, G. M. Proietti: XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs (100) surfaces. Appl. Surf. Sci. 56 (1992), 81.

    Google Scholar 

  166. Z. H. Lu, B. Bryskiewicz, J. McCaffrey, Z. Wasilewski, M. J. Graham: UV/ozone oxidation of GaAs (100) and InP (100). J. Vac. Sci. Technol. B11 (1993), 2033.

    Google Scholar 

  167. S. Ingrey: III- V surface processing. J. Vac. Sci. Technol. A10 (1992), 829.

    Google Scholar 

  168. V. I. Nefedov, O. A. Baschenko: Relative intensities in ESCA and quantitative depth profiling. J. El. Spectrosc. Rel. Phenom. 47 (1988), 1.

    Google Scholar 

  169. A. Jablonski: Elastic scattering and quantification in AES and XPS. Surf. Interface Anal. 14 (1989), 659.

    Google Scholar 

  170. P.J. Cumpson: Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron Spectrosc. Rel. Phenom. 73 (1995), 25.

    Google Scholar 

  171. G. Becker (Universität Münster): Private Mitteilung.

    Google Scholar 

  172. K. Iltgen, C. Bendel, E. Niehuis, A. Benninghoven: TOF-SIMS depth profiling with a dual beam technique. Secondary Ion Mass Spectrometry SIMS X (Proceedings), John Wiley & Sons (1996), in Druck.

    Google Scholar 

  173. C. Wolf (Freiberger Compound Materials GmbH): Private Mitteilung.

    Google Scholar 

  174. B. Gruska (SENTECH Instruments GmbH): Private Mitteilung.

    Google Scholar 

  175. M. Seelmann-Eggebert (Institut für Angewandte Festkörperphysik, Freiburg): Private Mitteilung.

    Google Scholar 

  176. W. Mönch: On the oxidation of III-V compound semiconductors. Surf. Sci. 168 (1986), 577.

    Google Scholar 

  177. F. Bartels, W. Mönch: Oxidation mechanism of III-V semiconductors. Vacuum 41 (1990), 667.

    Google Scholar 

  178. G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar, F. J. Himpsel: The oxidation of GaAs(110): A reevaluation. J. Vac. Sci. Technol. B2 (1984), 351.

    Google Scholar 

  179. B. Burkhardt: Aufbau und Einsatzmöglichkeiten eines SIMS/SNMS/XPS/AES-Mehrverfahrensgerätes für die Tiefenprofilanalyse, gezeigt am Beispiel von UV/Ozon-Oxidschichten auf GaAs. Diplomarbeit, Münster (1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Deutscher Universitäts-Verlag GmbH, Wiesbaden

About this chapter

Cite this chapter

Schröder-Oeynhausen, F. (1997). Literaturverzeichnis. In: Oberflächenanalytische Charakterisierung von metallischen Verunreinigungen und Oxiden auf GaAs. Deutscher Universitätsverlag. https://doi.org/10.1007/978-3-322-95365-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-95365-0_7

  • Publisher Name: Deutscher Universitätsverlag

  • Print ISBN: 978-3-8244-2091-9

  • Online ISBN: 978-3-322-95365-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics